登陆注册
45062200000002

第2章 根(2)

通常主根对侧根的生长有一定的抑制作用,特别是在根端附近更为明显。假若将主根的根端除去,则侧根迅速长出。在园艺和蔬菜栽培上,常采用幼苗移栽的办法,就是将伸展到耕作层以下的主根切断,促使大量侧根的发生,以便在土壤表层吸收更多的水分和养料。

不定根的外形、结构与功能同其他的根没有差别,只是它们的发生部位不是在正常形成侧根的部位,而是从植物体的其他部位,如茎、叶、地下茎及较老的根部产生。另外也可从人工离体培养的组织器官中发生。

不定根一般由靠近维管组织周围的束间薄壁组织发生。在老的木本茎中,不定根原基则起源于靠近形成层的射线细胞,甚至有的直接从形成层产生。在插条、植物受伤部位或离体组织、器官培养中,不定根通常从愈伤组织中发生。

在林业和园艺上,对柳树、杨树、葡萄、月季和秋海棠等植物的枝条扦插、叶插或压条等无性繁殖中,均能产生大量不定根。但也有些植物在同样条件下不易形成不定根,如用赤霉素等植物激素处理后,仍可诱导出不定根来。在植物细胞,组织或器官的离体培养中,应用吲哚乙酸、萘乙酸和2,4-D等植物生长调节物可诱导不定根的发生,以获得完整的再生植株。

五、变态

有些植物的根,在形态、结构和生理功能上,都出现了很大的变化,这种变化称为变态。变态是长期适应环境的结果,这种特性形成后,相继遗传,成为稳定的遗传性状。常见的变态根有肉质根、块根、气生根和支柱根。

1.肉质根

如萝卜、胡萝卜、甜菜的变态根。它们是由主根以及胚轴的上端等部分膨大形成,在肥大的主根中,薄壁组织细胞内贮存大量养料,可供植物越冬后和次年生长之用。这部分也是食用的部分。这些肉质根虽然外表相似,但内部结构是不同的。在萝卜的肉质根中,大部分为次生木质部,其中具发达的木薄壁组织,储藏着大量的营养物质。胡萝卜肉质根的大部分,属于次生韧皮部,丰富的营养物质储藏在发达的韧皮薄壁组织中。甜菜根除了具正常的次生结构以外,在维管组织的中心外面,由同心圆状排列的形成层产生,它们是从中柱鞘和韧皮部衍生的,形成层能产生出几层维管组织细胞,以及在木质部束和韧皮部束之间,还有大量径向排列的薄壁组织,其发达程度,与甜菜的含糖量有着密切的关系。

2.块根

植物侧根或不定根膨大而成。这种变态根不像萝卜等,每株只形成一个肉质根,而是一株可以形成许多膨大的块根。常见的如甘薯的块根。它是由茎节间上的不定根所形成,这些不定根先是正常的次生生长,其中次生木质部由大量的木薄壁组织和分散排列的导管所组成,然后在导管周围的一些薄壁组织细胞,恢复分生能力,发育为形成层。形成层活动产生导管、筛管、乳汁管和大量的薄壁组织细胞。

3.气生根

气生根是是生长在空气中的一种变态根,如榕树的枝干上长出许多不定根,可以一直垂入到土壤。此种气生根没有根毛和根冠,不能吸收养分,但能吸收空气中的水分,也有呼吸的功能。由于气生根扎入土内,起了支持作用,使榕树树冠得以发展,故有“独木成林”之感。热带森林中的许多兰科植物也有发达的气生根,它们附生在树的枝干上,靠气生根吸收空气中的水分。气生根因作用不同,又可分为呼吸根、支柱根、攀缘根和吸器。

一些生活在沼泽、海滩的植物,其地下部分生活在缺氧环境中,如落羽杉和海桑树等,在树的主干附近,从土壤或水中伸出许多根来,这些根的结构特殊,内部有许多气道,这种根主要是行呼吸和通气作用,故有呼吸根或通气根之称。

4.支柱根

最典型的例子是玉米,从茎基部的几个节上长出许多不定根,并向下伸入土中,不仅能吸收水分和无机盐,而且此种根的机械组织发达,能起到稳固茎干的支持作用。

常春藤和凌霄花等植物的细长茎上,生有无数不定根,以其将自身固定在墙壁或其他植物茎干上,这类变态根叫做攀缘根。

营寄生生活的被子植物,如菟丝子,它的茎缠绕在寄主的茎上,并生出许多吸器,吸器伸入寄主茎的内部组织,它们的维管组织与寄主的维管组织相连接,以此可吸收寄主的水分和养料。

六、菌根和根瘤

许多植物的根系与土壤中的微生物建立了共生关系,在植物体上形成菌根或根瘤。某些种子植物的根与土壤真菌共生所形成的共生体,称为菌根。根据真菌对寄主皮层细胞侵染的情况,又分为两种类型:①外生菌根,真菌形成一鞘层,即菌丝罩,整个包裹着幼根的外部,只有少数菌丝侵入到根皮层的胞间隙中,如松树、栎树等。②内生菌根,真菌形成不明显的罩子,而大部分菌丝均侵入到根部皮层的细胞内部,如兰属、草莓等。菌根真菌的菌丝如同根毛一样,起吸收水分与矿质营养的作用。还能将土壤中的矿质盐和有机物质,转变为易于寄主吸收的营养物质,以及可制造维生素等,供给根系。而寄主植物分泌的糖类、氨基酸及其他有机物质又可供真菌生活,因此两者为共生关系。

豆科植物与根瘤细菌的共生体,即为根瘤。根瘤的维管束与根的维管柱连接,两者可互通营养,一方面豆科植物将水分及营养物质供给根瘤细菌的生长;另一方面根瘤细菌也将固定合成的铵态氮,通过输导组织运送给寄主植物。此外,在植物界中还有一些非豆科植物,如早熟禾属、看麦娘属和胡颓子属等十几个属一百多种植物也能结瘤固氮。

七、生理功能

根不仅是一个吸收水分与矿质盐的主要器官,而且也是一个转化和合成营养的地方,代谢活动异常活跃。

1.根对水分的吸收

根系从土壤中吸收水分的最活跃部位,是根端的根毛区(即成熟区)。通常仅由根系的活动而引起的吸水现象,称为主动吸水,而把由地上部分的蒸腾作用所产生的吸水过程,称被动吸水。当植物在蒸腾作用微弱的情况下,主动吸水才是植物吸水的主要原因。土壤水分经根毛和表皮向内扩散的时候,首先从皮层的细胞壁或胞间隙等质外体途径,即“自由空间”通过,到了内皮层,因其细胞的径向壁与横向壁上具栓质的凯氏带,水分不能通过,这时水分只能经由内皮层细胞中的质膜和液泡,即共质体的途径。水分经内皮层细胞进了维管柱以后,则又属质外体的途径,直至木质部的导管。

2.根对矿质营养的吸收

根系从土壤中吸收矿物质是一个主动的生理过程,它与水分的吸收之间,各自保持着相对的独立性。根部吸收矿质元素最活跃的区域是根冠与顶端分生组织,以及根毛发生区。土壤中的各种离子先吸附在根表面,然后经能量转换与酶的作用,通过细胞质膜进入细胞中,再由细胞间的离子交换、进入维管柱的木质部导管。

3.根对地上部分生长发育的影响

根系不仅将植物的地上部分牢固地固着在土壤中,从土壤吸收大量水分和矿质营养,供给地上部分生长发育的需要,而且根部还能进行一系列有机化合物的合成转化。其中包括有组成蛋白质的氨基酸,如谷氨酸、天门冬氨酸和脯氨酸等;各类植物激素,如吲哚乙酸、细胞分裂素类,以及少量的乙烯等。根还能从土壤中吸收二氧化碳并固定,借助于特种酶和丙酮酸的作用,转变为苹果酸,然后转运到地上部分,参加叶子的光合作用。

根在其生命活动中,不断向周围环境分泌出许多物质,如氨基酸、磷脂、维生素、有机酸、碳水化合物、单宁、植物碱,以及过氧化物酶、磷酸酯酶、转化酶、淀粉酶、纤维素酶、蛋白酶与脂肪酶等多种胞外酶。此外,根还能分泌二氧化碳、磷、钙、钾、硫等无机物。这些根的分泌物不仅对植物本身具有重要的生理作用,而且对根周围的微生物也有明显的影响。

八、根的经济用途

在人类生活中,许多植物的根部已被广泛利用,如甘薯、豆薯、葛藤、木薯等肥大的块根,内含丰富的淀粉,可供人们食用或工业用。萝卜和胡萝卜的根部,是人们常食的蔬菜。甜菜的块根是制糖工业的原料。人参、乌头、甘草、地黄和麦冬等根部是著名的中药材。雷公藤、百部和鱼藤等根部富含生物碱或鱼藤酮,对植物病虫有毒效,可作为防治作物病虫害良好的植物性农药。茜草的根能提取鲜红色的染料,可用于染动植物性纤维及食用色素。

同类推荐
  • 探究式科普丛书-生物生存的重要能源:土壤

    探究式科普丛书-生物生存的重要能源:土壤

    本书主要介绍了土壤的自然属性、土壤的成因理论、土壤的环境功能、土壤的环境意义和有关化学过程等知识,同时介绍和讨论了当前土壤环境研究领域的前沿问题、有关土壤机理,以及土壤污染研究、治理方法等。
  • 最新21世纪生活百科手册·摄影实用小百科

    最新21世纪生活百科手册·摄影实用小百科

    最新21世纪生活百科手册·摄影实用小百科最新21世纪生活百科手册·摄影实用小百科
  • 自由的飘浮——航空知识

    自由的飘浮——航空知识

    探索浩瀚的太空,是人类千百年来的美好梦想。人们憧憬着能随心所欲地遨游太空,与外星人对话交流,去太空休闲旅游度假,去拜访嫦娥的宫殿……我们的祖先有着未能登天的遗憾,可随着科技的进步,今天的人们已经能够自在地穿梭于天空之中。科技的发展和知识的普及不仅为我们解开了飞行的奥秘,也让我们看到了先前的探索者是如何一步步“走”上天空,弥补祖先留下的遗憾的。今天的我们,正见证着航天技术的飞速发展:多姿多彩的火箭,形态各异的人造卫星,还有宇宙飞船、航天飞机、空间探测器、空间站,这些航天器大家族共同谱写着远征天疆的雄壮乐章。
  • 讲给中学生的课外知识-思·物理现象

    讲给中学生的课外知识-思·物理现象

    本文主要讲述了:在飞机上为什么给发口香糖?、龙卷风之谜、壁虎脚底的黏着力、昆虫怎样发出鸣叫声?等内容。
  • 发现太阳系

    发现太阳系

    青少年朋友对太阳和太阳系充满了强烈的好奇心和探索欲望。为了让他们更综合全面地了解太阳和太阳系,激发他们热爱科学、主动学习科学的热情,我们编写了《发现太阳系》。视觉天下探索发现丛书编委会编著的《发现太阳系》依次介绍了太阳系的各个成员,从趣味科学的角度对未解之谜进行提问和解答。本书在每一小节的最后附带了知识链接,以便读者进行拓展阅读,帮助情事阿年进一步拓展思维,启发青少年对太阳系的更好奇心,并让其从体会到探索科学的乐趣,有助于青少年更好地认识宇宙,了解太阳系。
热门推荐
  • 异世修炼天才

    异世修炼天才

    龙门镇一位天生魂脉的天才前往珑云大陆修炼,什么都不会的他拜仙老为师修炼超级武技,打败第一位敌人时得到小精灵的赐福与百草宝鉴,就当他进入珑云学院修炼时由于对方的强大使自己从天才变成废材,而仙老却为了救他丧了命。当这样一位废材该怎样在珑云大陆重新崛起,请观看异世修炼天才,不一样的精彩,不一样的小说内容将会给你好看!!!新书求好朋友跟读者收藏与推荐票,您的每一个点击,将是我无限创作的动力!!!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 树上花已开

    树上花已开

    “不论多久,我都等你。”他的愿望,就是她。
  • 苍穹北游记

    苍穹北游记

    苍穹北游记中,主人公是一位明将之后叫李飞鹰(男,18,朝中人士),另一位主人公是名妓之后叫乔灵儿,(女,18,中原人士)所以人称乔灵儿,还有一位主人公就是李飞鹰的父亲叫李飞刀,在他年轻的时候,人人称他小李飞刀,武林中的泰斗人物。一个平凡的家庭生活中的李飞鹰因为很调皮,所以就想出去闯荡江湖,却不知江湖险恶,不过人长的俊是他的一个要点,但还有一点就是身藏不漏,不到万不得已,觉不使出他的家传武学---小李飞刀。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 沈先生在线被套路

    沈先生在线被套路

    被深爱的初恋背叛,导致父母双亡,林之谂带着绝望自杀,却被人救起,最终捡回了一条命。林之谂想既然老天爷不准她死,好,那她就带着满腔怒火归来。别人会见初恋,带着的或是爱意,或是平静,而林之谂只有满满的恨,以及心底最深处那一点点即将消失殆尽的爱意。令林之谂没想到的是,她会再次陷进爱情的沼泽,只是这一次,她已经不是当年那个懵懂的小女生了。林之谂发誓,她一定要让那人血债血偿!
  • 乱营街

    乱营街

    《乱营街》里就有这么一群人,活在底层,没有固定的生活套路和轨迹,他们看上去好像没有方向,就像一些漂摇在巨浪里的木船或者浮萍,没有拴系自己的码头或根茎,随时都会翻掉或漂向别处。这是一个围绕金钱旋转的时代,似乎所有人都在发财的梦里游荡着。《乱营街》里的人也是这样,小说中的“我”——李豹公,有点像韦小宝,是那种小时候学习不好,工作了又下岗,只能到街头游荡的混混,但他内心似乎也有一些东西或者说向往,只是在乱营街里,被他充当的男妓和皮条客等等的角色掩盖着。
  • 龙魂泣血

    龙魂泣血

    魔祖曰:亿万年之后,就是吾归来之日。祖神曰:九珠联体,集于一身,汝归来之日,就是身死之时。问曰:何为神,何为魔?答曰:顺天道而行为神。逆天道而行为魔。神魔双修,尊天斩道,方能修得无极之道。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 魔兽剑圣纵横漫威

    魔兽剑圣纵横漫威

    深陷低谷的老实人,被刚睡醒的大能失误丢进漫威的悲惨故事!“其实我都清楚,只是我遵守底线。千万别惹我,老实人发起火谁都顶不住!”——张桐