登陆注册
7735900000029

第29章 冷却器优化设计(1)

13.1最优化设计数学模型

科学技术的发展提出了大量复杂的最优化问题,对冷却器优化设计也一样,现在只要提出冷却器各项指标技术参数,采用计算机就可以在几分钟内设计出一台冷却器。

最优化问题的求解方法是针对比较复杂的极值问题,提出一种区别于解析法的数学解法,亦称迭代算法。但由于在数学模型中,定义的是极大(小)值问题,对这种求解最优化问题的数值解法也称下降迭代解法,即迭代法。

1.最优化问题中数学的迭代法

按照某一迭代算式,从任意一个初始点X0开始,以某种递推格式产生如下点列:

X0,X1,X2,…,Xk,XK+1,…

若该点列所对应的目标函数值呈严格的单调下降趋势,即有:

f(X0)>f(X1)>f(X2)>…>f(Xk)>f(XK+1)>…

则产生此点列的算式和递推迭代格式就构成了一种下降迭代解法。在最优化方法中,迭代点的产生一般采用如下迭代算式:

X=Xk+αSk

式中,Sk称为搜索方向,α称为步长因子。此式以新的迭代点X从当前点Xk出发,沿方向Sk跨出α步长得到的。

为了让每一次迭代都能使目标函数获得最大的下降量,新的迭代点通常取作方向Sk上的极小点,亦称一维极小点,记作Xk+1,即有:

Xk+1=Xk+αkSk(13‐1)

其中,αk为最优步长因子。求最优步长因子αk和一维极小点Xk+1的数值算法称为一维搜索算法或线性搜索算法。

于是下降迭代解法的基本迭代格式可概括如下:

①给定初始点X0和一个足够小的收敛精度ε>0,并没计算单元k=0。

②选取搜索方向Sk。

③得到最优步长因子αk,并由Xk+1=Xk+αkSk计算得到新的迭代点Xk+1。

④最优解判断:若Xk+1满足收敛精度要求,亦称终止准则,则以Xk+1作为最优解,输出计算结果并终止迭代;否则,以Xk+1作为新的起点,即令k=k+1,转②进行下一轮迭代。

由此不难看出,要构成一个下降迭代解法必须解决以下3个基本问题:

①选择最合适的搜索方向,不同的搜索方向构成不同的下降迭代算法。

②寻找最优步长因子和新的迭代点,译本采用一维搜索算法。

③给定适当的终止判断准则。

2.算法的收敛性与终止准则

(1)算法的收敛性

当迭代算法产生的点列(所谓点列从各热阻的计算可知翅片管中每根管的翅片数,及翅片管根数)所对应的函数值严格地单调递减,并且最终收敛于最优化问题的极小点时,称此迭代算法具有收敛性。点列向极小点逼近的速度称为算法的收敛速度。作为一种可靠实用的最优化算法,不仅要有良好的收敛性,而且应具有尽可能快的收敛速度。

(2)终止准则

由于计算机的计算精度越来越高,任何最优化算法向极小点的逼近过程,都将是一个可望而不可及的过程。因为不可能让两个实数完全相等,所以精确的最优解是永远也不可能达到的。但是从工程角度考虑,一个精确度过高的最优解在计量和实施过程中是无法实现的,也没有必要的。因此,最优化计算只要求得到满足一定精度的近似最优解,而非精确最优解。判断迭代点是否达到给定精度要求的判别式称为最优解,而非精确最优解。判断迭代点是否达到给定精度要求的判别式称为最优化算法的终止(收敛)准则。

常用的终止准则有以下3种:

①点距准则。一般来说,迭代点向极小点的逼近速度是逐渐变慢的,越接近极小点,相邻迭代点间的距离越小。当相邻迭代点间的距离充分小,并且小于给定的收敛精度ε>0,即有:

Xk+1-Xk≤ε(13‐3)

时,便可认为点Xk+1是满足给定收敛精度的最优解。于是,可令X=Xk+1,输出X和f(X)后终止迭代。一般取收敛精度ε=10-6~10-4。

②值差准则。在迭代点向极小点逼近的过程中,不仅相邻迭代点间的距离逐渐缩短,而且它们的函数值也越来越近。因此,可将相邻迭代点的函数值之差作为判断近似最优解的另一个准则,这就是值差准则。即对于充分小的正数ε,如果f(Xk)-f(Xk+1)≤ε

或者

f(Xk)-f(Xk+1)

f(Xk)≤ε(13‐4)

成立,则令X=Xk+1,输出X和f(X)后终止迭代。

③梯度准则。由极值理论知,多元函数在某点取得极值的必要条件是函数在该点的梯度等于零。一般情况下,梯度等于零的点就是函数的极值点。但是在迭代计算中,梯度值不可能绝对等于零,故可认为,梯度的模小于给定精度(ε>0)的点就是函数的近似最优点。即当:

蜒f(Xk+1)≤ε (13‐5)

时,令X=Xk+1,输出X和f(X)后终止迭代。

通常,上述3种终止准则都可以单独使用,只要其中一个得到满足,即可认为已经得到了符合给定精度要求的近似最优解。

但是,在某些情况下,相邻迭代点及其函数值不可能同时达到充分接近。这时只有将点距准则和值差准则联合起来使用,才能保证得到真正的近似最优解。

3.线性搜索

下降迭代算法中在搜索方向Sk上寻求最优步长αk时通常采用一维搜索,亦称线性搜索。

线性搜索是构成非线性最优化算法的基本算法,因为多元函数的迭代求解都可归结为在一系列逐步产生的下降方向上的线性搜索。

对于函数f(X)来说,从Xk出发,在方向Sk上的线性搜索可用数学式表达如下:

minf(Xk+αSk)=f(Xk+αkSk)

Xk+1=Xk+αkSk(13‐6)

此式表示对包含惟一变量α的一元函数f(Xk+αSk)求极小,得到最优步长因子αk和方向Sk上的一维极小点Xk+1。

可见,线性搜索是一种一元函数极小化的数值迭代算法,可以简记为minf(α)

或者更一般的形式minf(x)

线性搜索的数值迭代算法可分两步进行。首先确定一个包含极小点的初始区间,然后采用逐步缩小区间或反复插值逼近的方法求得满足一定精度要求的最优步长和极小点。

(1)确定初始区间

设f(x)在考察区间内为一单谷函数,即区间内只存在一个极小点。这样在极小点的左侧,函数单调下降;在极小点右侧,函数单调上升。若已知该区间内的相邻3个点x1<x2<x3及其对应的函数值f(x1),f(x2)和f(x3),便可以通过比较这3个函数值的大小估计出极小点所在的方位。

①若f(x1)>f(x2)>f(x3),则极小点位于点x2的右侧。

②若f(x1)<f(x2)<f(x3),则极小点位于点x2的左侧。

③若f(x1)>f(x2)<f(x3),则极小点位于x1和x3之间,[x1,x3]就是一个包含极小点的区间。

可见,在某一方向上按一定方式逐次产生一系列探测点,并比较这些探测点上函数值的大小,就可以找出函数值呈“大-小-大”变化的3个相邻点。其中两边的两个点所确定的闭区间内必定包含着极小点,这样的闭区间称为初始区间,记作[a,b]。这种寻找初始区间的方法可归结为以下计算步骤:

①给定初始点x0,初始步长h,令x1=x0,记f1=f(x1)。

②产生新的探测点x2=x0+h,记f2=f(x2)。

③比较函数值f1和f2的大小,确定向前或向后探测的策略。

若f1>f2,则加大步长,令h=h2,转④向前探测;若f1<f2,则调转方向,令h=-h,并将x1和x2、f1和f2的数值分别对调,然后转④向后探测。

④产生新的探测点x3=x0+h,令f3=f(x3)。

⑤比较函数值f2和f3的大小。

若f2<f3,则初始区间已经得到,令C=x2,fc=f2,当h>0时,令[a,b]=[x1,x3];

当h<0时,[a,b]=[x3,x1]。

若f2>f3,则继续加大步长,令h=2h,x1=x2,x2=x3,转④继续探测。

分析可知,在上述确定初始区间的过程中,初始步长h的大小必须选择适当,太大时,产生的点x1或x2可能超出单谷区间的范围。太小时会延长确定初始区间的过程。

一般情况下取初始步长h=1.或0。

(2)缩小区间

线性搜索就是在给定的方向和初始区间上不断缩小区间,以得到该方向上的一维极小点的数值算法。缩小区间的基本方法是,在已知区间内插入两个不同的中间点,通过比较这两个点上函数值的大小,舍去不包含极小点的部分,将原区间缩小一次。

在区间[a,b]内,任选两个中间插入点x1和x2(x1<x2),并比较这两个点上的函数值:

①如果f(x1)<f(x2),则根据单谷区间的性质可知,极小点必在a和x2之间,于是可舍去区间[x2,b],得到新的包含极小点的区间[a,b]=[a,x2]。

②如果f(x1)>f(x2),则极小点必位于x1和b之间,舍去区间[a,x1],得到缩小后的新区间[a,b]=[x1,b]。

不断重复上述过程,就可以将包含极小点的区间逐渐缩小,当区间长度b-a小于给定精度ε时或区间内中间两个点的距离小于ε时,便可将区间内的某一个点作为该方向上的近似极小点。

可见,只要引入任意两个中间插入点就可将区间缩小一次。但是,不同的中间插入点所产生的区间缩小效果是不同的,得到一维极小点的速度也是不同的。不同的中间插入点的产生方法构成了不同的一维搜索算法。下面要介绍的黄金分割法和二次插值法就是其中最常用的两种算法。

(3)黄金分割法

黄金分割法亦称0.618法,它是按照“对称又对称”的原则选取中间插入点,并进而缩小区间的一种线性搜索算法。

若缩小一次后的新区间为[a,x2],要求区间内的点x1在新区间内仍然是一个具有同样对称关系的对称点,这样只需要再产生一个新点,就可以将区间又缩小一次。

考查点x1在新区间内的位置和对称性要求,知道原区间中的点x1在新区间内应处于点x2的位置。可以看出,新旧区间内的点x2到区间起点a的距离都是各自区间长度的λ倍。

4.无约束最优化算法

求解无约束最优化问题

minf(X)(13‐10)

其数值迭代解法,称为无约束最优化方法。无约束最优化方法是构成约束最优化方法的基础算法。

求解无约束最优化问题的下降迭代解法具有统一的迭代格式,其基本的问题是选择搜索方向和在这些方向上进行线性搜索。由于构成搜索方向的方式可以不同,从而形成了各种不同的无约束最优化算法。

根据搜索方向的不同构成方式,可将无约束最优化方法分为导数法(亦称解析法)和模式法(亦称直接法)两大类。

利用目标函数的一阶导数和二阶导数信息构造搜索方向的方法称为导数法。由于导数是函数变化率的具体描述,因此导数法的收敛性和收敛速度都比较好。常采用梯度法。

梯度法是一种古老的无约束最优化方法,它的迭代方向是由迭代点的负梯度构成的。由于负梯度方向是函数值下降得最快的方向,故此法也称为最速下降法。

梯度法的这一迭代特点是由梯度的性质决定的,因为梯度是函数在一点领域内局部变化率的数学描述。沿一点的负梯度方向前进时,在该点邻域内函数下降得最快,但是离开该邻域后,函数就不一定继续下降得快,甚至不再下降。这就是说,以负梯度作为搜索方向,从局部看每一步都可使函数值获得较快的下降,但从全局看却走了很多弯路,故梯度法的计算速度较慢。可以证明,梯度法只具有线性收敛速度。

在梯度法的迭代过程中,离极小点较远时,一次迭代得到的函数下降量较大。或者说,梯度法在远离极小点时向极小点的逼近速度较快,而越接近极小点逼近速度越慢。正是基于这一特点,许多收敛性较好的算法,在开始的第一步迭代都采用负剃度方向作为搜索方向,如后面将要介绍的变尺度法和共轭梯度法等。

梯度法的收敛速度与目标函数的性质密切相关,对于一般函数来说,梯度法的收敛速度较慢。但对于等值线为同心圆(球)的目标函数,无论从任何初始点出发,一次搜索即可以达到极小点。可见,若能通过适当的坐标变换,改善目标函数的性态,也可以大大提高梯度法的收敛速度。

13.2冷却器优化设计参数的求解

最优化设计方法实际上就是求函数的极值或求泛函的极值。如果目标函数有明显的表达式,则可以用微分法、变分法、最大(小)值原理等分析法、迭代法求解。当目标函数的表达式很复杂,或无明显的表达式时,则可用数学规划法或动态规划法直接选优。

1.解单变量函数极值问题的直接法

设目标函数y=f(x)在区间[a,b]上只有一个极值点,称则y=f(x)为单峰函数。多峰函数只要适当划分区间[a,b],可以使它在每一个子区间内均匀单峰函数,因此,假定y=f(x)在区间[a,b]上是单峰的。

在区间[a,b]上求一点x使得

f(x)=minf(x)

a≤x≤b

称x*为f(x)在区间[a,b]上的最优解。

同类推荐
  • 四川省第一次全国污染源普查成果汇编

    四川省第一次全国污染源普查成果汇编

    本书是四川省环保系统进行全国第一次污染源普查后的成果汇编。全书就四川省污染源普查的经过和结论进行了详细的报告,包括总报告(国家发令、地方筹组、全面铺开、详细经过、主要结论,等等)、技术报告、各类污染源普查分报告(放射性污染源、农业污染源、废气废水污染源、生活污染源、工业危废医废,等等),全方位立体地如实反映了四川全省各地区各行业各类污染源的存在现状,对四川省的污染情况进行了全面摸底,为以后科学合理地进行污染治理提供了详实的基础数据,有利于全省乃至于全国的环境保护工作科学开展。
  • 食品分析

    食品分析

    本书重点介绍了食品工程的基本书由上、下两篇组成,上篇为理论部分,共16章,分别介绍分析化学基础知识、采样和样品制备、pH与可滴定酸度、水分测定、灰分分析、矿物质的测定、碳水化合物的测定、膳食纤维的测定、脂类的测定、蛋白质与氨基酸的测定、维生素的测定、食品添加剂的测定、农兽药残留分析、热分析和流变学分析及现代仪器在食品分析中的应用;下篇为实验部分,共15个实验,主要介绍了对应上篇所述成分的测定。本书可作为食品科学与工程、食品质量与安全、乳品工程等相关食品专业本科生的教材或参考书,也可作为各类食品从业人员的参考用书。
  • 密码之谜

    密码之谜

    挖掘了人类社会、地球乃至宇宙所包含的难解谜题首次披露了大干世界中神秘的、充满悬疑色彩的谜团背后鲜为人知的内幕。百万字的传奇读本精选了有关国宝、密码、海盗、大谋杀,诡异事件、离奇事件的未解经典内容选配了数千幅珍贵图片,带给读者一场视觉饕餮盛宴。
  • 低碳生活100招

    低碳生活100招

    全球日益变暖的趋势下,如何践行低碳生活理念,拥有健康环保的生活方式?
  • 整合科技资源跨区域科技赈灾
热门推荐
  • 惑乱红尘

    惑乱红尘

    你既然一定要与我作对,我也不是心慈手软之人,我要你悔不当初,你要守天下,那我便做着祸国之人,惑乱这个红尘...
  • 连心殇

    连心殇

    都市富家活泼女余果果通过心脏热血意外复活沉睡已千年的不死老怪杨萧仟,将原本的生活轨迹彻底缭乱......
  • 全世界都在等我黑化

    全世界都在等我黑化

    ——part1当小傅少被陷害入狱时就喜提狱霸小跟班一职。“就你了!”“我?”“我不要。”傅少十分不情愿。女人仿佛没听见,“小跟班,吃饭去了。”——part2小傅少出狱之后“你你……怎么在这儿?”小傅少一脸惊恐。“傻子,我为什么不能在这儿?”“我想说的是……”你怎么出狱了?——part3“英雄救美”“小跟班,别怕,爷罩你。”我曾以我的帝国为信仰,如今我已回不去了,我便守着你吧。【男女主身心干净】【不喜勿喷】
  • 天才邪女

    天才邪女

    云落山庄庄主凤千云被邪宗的人追杀,在无极山下得小妞相救,那小妞刚刚换牙,说话漏风!手里提比她人还高的巨剑,身后跟着一群斑纹大虎,她就这么一脚踩着他的背,一手杵着巨剑,目光睥睨着那帮追杀他的人,慢慢吐出一句话:“这锅人偶罩猪了!谁敢冲项来?权部找屎!”于是他们的故事就这样开始了!--情节虚构,请勿模仿
  • 遗忘千年花开放

    遗忘千年花开放

    彼岸花开时,你我相见日。为了心爱之人,在幽冥界等了一千年的尹慕寒投胎转世之时竟然胎死腹中。这是老天故意拿他开涮吗?一千年诶!为了不再忍受这千年的相思之苦,他决定和双胞胎的弟弟公用一个身体。可是为什么每次他用弟弟身体的时候,他对她的记忆就只会剩下那一句“彼岸花开,花开彼岸,奈何桥前,三生石畔。。。”
  • 超级建造帝国

    超级建造帝国

    两度创业失败的吴双陷入了人生的低谷,又因为身材问题被父母逼着去工地搬砖。于是在一个普通的工地上。一个建造帝国的传奇就从搬砖开始了!
  • 黄帝内经1000问

    黄帝内经1000问

    本书包括典籍流传、书名由来、篇章构成、学术价值、阴阳五行论、藏象要旨、经络衍说、病因病机、病证通说、脉要精微、妙诊异法、论治宜方、宝命全形、阴阳应天、藏气法时共15个篇章,用通俗易懂的语言以问答的形式论述了《黄帝内经》的中医学要旨、辨证论治及养生保健等方面的知识。力求深入浅出,不偏执于一家之言,对中医学爱好者,特别是初学者具有较强的指导意义。同时,对有志于《黄帝内经》和中医学基础理论研究的朋友们,也起到了抛砖引玉的作用。
  • 王俊凯:忘记从前

    王俊凯:忘记从前

    他们,是明星;她们,是千金。偶然的相遇,让他,违反了25岁以后再谈恋爱的约定,他爱她,却伤害了她,她,会原谅他吗?五年前,一件事情让我离开,五年后,我以另一个身份重新回到他身边,并让他的好兄弟不要告诉他我回来了,可是,我回来了,心更痛。——by林沐五年前,她突然离开了我,我找了她五年,突然有一天,她回来了,可是,她是冷冰冰的,一点也不认识我,你回来好不好,我错了。——by王俊凯
  • 我在异界开健身房

    我在异界开健身房

    你想变美吗?你想变帅吗?你想拥抱白富美、钓上金龟婿走上人生巅峰吗?游泳健身了解下吧!只要998只要998买不了吃亏买不了上当。什么?你没钱?我这缺个打杂的一个月三千干不干。
  • 天地火空风

    天地火空风

    一场意外的车祸,竟然把我撞进了另外一个世界,这个世界有神,却从未被人发现,这个世界有人,一样吃饭睡觉,这个世界还有冥府,而且和人类共存。我在这个世界醒来的第一夜,所在的城市就被冥府所破,而我成了这个城市唯一存活的当事人。十年之后,天地火空风五门,还有负责奇幻案件的730局,终会因为我的到来而掀起滔天波澜。