登陆注册
45993400000002

第2章 黑洞究竟是什么(1)

奥本海默是否已坠入黑洞?从目前许多关于宇宙学的书籍来看,可能是这样。这些书的索引中都没有出现奥本海默的名字,而且书里围绕黑洞所进行的冗长而复杂理论讨论中也没提到他。然而,正是这位伟大的美国物理学家,首先想象着这些非常奇怪的宇宙实体,把它们看成爱因斯坦相对论不可避免的产物。如今的人们更多地知道的是,奥本海默是洛斯·阿拉莫斯研究组的核心人物,投到广岛和长崎的原子弹就是他们造出来的。1938年末,奥本海默和沃尔科夫已完成了关于中子星质量和周长的计算。这项工作使奥本海默确信,质量大的中子星在死亡时会发生向心爆炸。这种向心爆炸的结果是什么呢?

宇宙中心的黑洞

奥本海默获得了他在加州技术学院的研究生斯奈德的帮助,以解决其中出现的数学方程。斯奈德是一名优秀的学生,具有独立思考的精神。作为当今黑洞领域最重要的专家之一,索恩在他1994年的《黑洞和时间扭曲》一书中就详细地讨论了奥本海默的工作。具有讽刺意味的是,索恩是奥本海默的主要对手之一惠勒的学生。索恩注意到,斯奈德在奥本海默和托尔曼指导下所作的计算难得可怕。问题中的有些方面直到20世纪80年代出现超级计算机之后才可能获得解决。“为取得一丝一毫的进展”,索恩写道,“给向心爆炸的恒星建立一个理想模型非常必要,然后对由模型的物理规律所做出的预测进行计算”。在索恩看来,斯奈德施展着绝技,建立了适用的方程,然后解决了它们。仔细研究这些公式,物理学家能得到他们所希望看到的向心爆炸的各方面性质,从恒星外看情况如何,从恒星内看如何,从恒星表面看如何,等等。

许多物理学家发现,这些方程让人难以理解。问题在于,从外部参考系来看,向心爆炸在到达某一点时会永远冻结住;而一个在向心爆炸时被向内带的恒星表面上的观察者看来,则似乎根本不会出现冻结。由于观察点不同,人们发现,一个恒星能同时做两件完全不同的事。这需用以前从未考虑过的时间扭曲来加以解释。是的,爱因斯坦曾提出过时间扭曲;是的,量子理论和海森伯不确定原理指出观测行为会对被观测的东西产生影响,但那是在亚原子尺度上。这些在大多数美国物理学家看来有点离题太远。

事实上,在奥本海默、斯奈德1939年的文章发表之前就有人做了这方面的研究。在那11年前,年轻的物理学家钱德拉塞卡就已经从理论上得出,恒星的核如果大于太阳尺寸的1.4倍,它将不会变成我们通常观察到的白矮星;相反,它们会因自身引力而继续坍缩。朗道,一个具有传奇色彩的前苏联物理学家,几乎同时得到这一结论。他与钱德拉塞卡因在这一领域的开创工作而共享1983年诺贝尔物理学奖。注意,这之间存在一个时间差。如果一位科学家要等上55年才获得一个诺贝尔奖,那么这就表明他的工作超前于他所处的时代。1928年,物理学界的一位巨头,曾在1919年观测日食而确证爱因斯坦相对论所预言的空间扭曲的爱丁顿爵士,就对钱德拉塞卡的理论大为光火。“应该存在一条自然规律以制止恒星以如此荒唐的方式演变”,他喊道。

奥本海默和斯奈德的文章从惠勒和其他美国物理学家那里得到了几乎相同的对待。事情因第二次世界大战的开始而暂时停了下来。美国物理学家开始加入到原子弹的制造之中。战后,虽然奥本海默和惠勒有段时间都在普林斯顿高等研究院工作,但他们之间的矛盾已影响到了他们的私人关系。当奥本海默首先从实用和伦理角度反对发展氢弹时,惠勒又成为对立阵营的主角。惠勒成为氢弹的主要设计者之一。奥本海默对氢弹的反对使他在麦卡锡主义流行的20世纪50年代深受影响,甚至人身安全都存在问题。尽管不忠于国家的指控从未得到证实,但这些浪费了他大量的精力,使他远离了关于黑洞的讨论。另一个原因是,惠勒在黑洞这个问题上完全转变了观点。

惠勒的转变是如此彻底,以致他于1969年给出了“黑洞”这个名词,并成为这一领域最重要的理论学家之一,完全超过了他的老对手奥本海默的贡献。电视系列片《星际旅行》中的一段情节就是根据这一现象而写的。《星际旅行的物理学》一书的作者克劳斯写道:“当我为准备写这本书而看到这一情节时,我发现非常有趣的是《星际旅行》的剧作者写错了。现在我意识到他们几乎发明了这个名词。”系列片的剧作者用的词是“黑星”。

《星际旅行》使公众着迷于黑洞这个概念。这种着迷也部分因为惠勒所想出来的名字,它能激发出巨大的神秘感,公众从未对像白矮星、中子星这些重要的恒星产生兴趣,而黑洞则像彗星一样吸引住了公众的注意力。事实上,公众对黑洞的关注是因为我们很难解释它,这使黑洞成为我们知识的空白,并促使每个人都能自由地发挥他们的想象去填补这片空白。

先来让我们问一个简单的问题:黑洞有多大?

理论上,任何东西都能变成一个黑洞。比如,一颗恒星、一颗卫星、帝国大厦、一头大象,你,或者我,只要有足够的力施加到这个物体上,把它压缩至它的引力场强到可以使空间弯曲、俘获光,这样它就变成了一个黑洞。你和我都可以变成一个小黑洞,只要我们只有一个电子的十亿分之一大。如果要使地球变成一个黑洞,那么地球就必须比乒乓球还要小。如果要使太阳成为一个黑洞,其半径将只有2.4千米。

实际上,太阳不会变成黑洞,你和我也不会。我们都没有大到可以成为黑洞,而有些恒星大到不可避免地会变成黑洞。正如费里斯在《全部家当》中解释的那样,“每颗健康的恒星都代表两种相反力的平衡。引力要使恒星坍缩;恒星的核产生的向外热辐射,使恒星向外扩张。在向内的引力和向外的热辐射的作用下,处于平衡状态的恒星会有规律地跳动。跳动的脉搏由一种美妙的反馈机制来调节。”这种热和引力间的反馈机制能使恒星燃烧很长时间,对于太阳这将是100亿年,这是太阳寿命的一半。恒星核中的核燃料维持着这种反馈机制,它的燃烧率与恒星质量的立方成正比。这样,如果一个恒星的质量是太阳质量的10倍,那么它的燃烧率就是太阳的1000倍,燃烧得更明亮,但也更短。对于任何尺寸的恒星,只要热和引力之间的平衡被打破,坍缩就将是不可避免的了。

尺寸像太阳那么大或质量只有太阳质量5/7的恒星将变成白矮星。白矮星大小如地球,却具有太阳那么大的质量,它将不再坍缩,因为量子力学中的泡利不相容原理在起作用,电子防止了恒星密度的增加。更大的恒星将坍缩得更厉害,常缩小到直径只有16.1千米,它们被称为“中子星”,因为它们的核是由电中性的亚原子粒子组成的。中子星旋转得非常快,能达到1000周/秒,如果它们还有一个磁场的话,那么它们将产生很强而又短促的无线电波束,这使它们得到了“脉冲星”的名称。

更大的恒星可能具有很大的质量,以致它们演化成的白矮星或中子星会继续坍缩下去,这样就将形成黑洞。任何物体包括光,都逃不脱黑洞的吸引,只要它们离黑洞的视界足够接近,它们就会被吞噬。支配宇宙的正常的引力规律在视界处转变为支配黑洞的规律。黑洞是这样一个奇点,在其内部区域特殊的规律起着作用。已有许多不同的理论尝试着详细说明黑洞内部所发生的一切。甚至连好莱坞都参与其中,这在迪斯尼公司1979年的电影《黑洞》中有所表现。虽然这部电影视觉上非常壮观,但却傻得可爱。一些宇宙学家认为,任何掉入黑洞的物体将被拉长,像面条一样,而另一些人则想象着通过黑洞旅行到另一个不同世界的可能性。许多聪明的人为此做了无数的计算,但遗憾的是,还没有人真正知道将发生什么。考虑到宇宙大爆炸理论的某些方面,我们所面对的奇点为描述黑洞提供了一些线索。不管对黑洞的数学描述有多么精致,它只是一个想象的现实。

自惠勒转而支持黑洞这个想法以来,无数的宇宙学家尽力想弄懂这些奇怪的星体的本性。20世纪七八十年代,直到90年代,关于黑洞的理论层出不穷,引起争论不断。有关的理论很多了,但却存在一个问题:人们还未观测到黑洞。

天文学家观测黑洞存在一个固有的问题。从黑洞的定义可知,它们不能被观测到,只能从它们周围的其他恒星和星系的表现来推断黑洞的存在。随着1994年对哈勃望远镜的修复和X射线望远镜的发展,人们不断进行观测,积累有用的信息。20世纪90年代后半期和2000年的开头,根据记录的数据,许多有关黑洞的预言都被证实。在过去的几年中,几乎所有的宇宙学家都认为我们已拥有了证明黑洞存在的证据。然而事情常常是这样的,当不断获得新的信息时,它在解决问题的同时也不断地带来新的问题。

彭洛斯所描述的恒星坍塌为一个奇点的过程是对黑洞的最好的理论解释。这幅艺术创意画把奇点描绘成在黑洞深处的一个黑点,它是这样的致密,包括光在内的所有东西都不能逃脱它的引力场。在外面的3条光线受到奇点和黑洞的引力作用而弯曲,但它们最终还是逃脱了。第4条光线恰好位于被截获和能逃脱的临界状态之上。在最里面的第5条光线则完全被截获了,它永远不能再从黑洞逃脱。

自1974年天鹅座X1被普遍认为是黑洞的最佳候选者以来,天文学家就一直在这方面不懈地努力着。天鹅座X1是一个由两颗恒星组成的双星系统,这样的系统在宇宙中很常见,但天鹅座X1的特别之处在于:用光学手段进行观测时,一颗恒星很亮,但用X射线进行观测时就变得很暗了;另一颗正好相反,光学观测时很暗,X射线观测时就很“亮”。前一颗恒星看来在绕后一颗旋转。利用数学公式,会发现那颗暗星太重,不会是中子星,非常可能是一个黑洞。20世纪80年代中期,天文学家收集了大量有关天鹅座X1的信息,致使索恩和霍金为它是不是黑洞而打赌。如果是黑洞,霍金要为索恩订杂志《雨篷》;如果不是黑洞,索恩要为霍金订讽刺杂志《个人观点》。到1990年,增加的证据使索恩认为,他有95%的机会是对的,但他并不希望霍金认输。然而,索恩还是写道:“1990年6月的一个深夜,当我在莫斯科与同事进行研究时,霍金及其随从闯进了我在加州理工的办公室,找到了打赌的凭证,写了一个认输的便条,并加盖了霍金的拇指印。”

天鹅座X1是黑洞这一结论,既有从哈勃望远镜得到的光学观测证据,也有X射线观测证据。其他的新信息更具有挑战性。正如一些天文学家所预言的,20世纪90年代后期的观测证据表明存在两种不同的黑洞。科学家正在找的不光是具有天鹅座X1这样典型双星系统质量的黑洞,还包括质量为10亿倍太阳质量的黑洞。这样的超级黑洞不断在星系中心被发现,到2001年为止已发现了30个。这些都是通过测量黑洞周围被黑洞所吞噬的高速旋转气体的速度得到的。

结果表明,星系越大,其中心的黑洞就越大。并且,这些超级黑洞好像只存在于椭圆状星系的中心,而且星系中心有一个致密的恒星群突起,没有中心突起的星系则没有黑洞。银河系有一个相对较小的中心突起,它有黑洞,但黑洞的质量只有几个太阳那么大。不管黑洞很大,还是相对较小,从所观测到的数据来看,黑洞的质量只相当于星系中心突起部分质量的0.2%。

宇宙学家检验着这些证据,并越来越确信黑洞可能是形成它周围星系的种子。在一个小组发现了三个超级黑洞后,小组的领导、密歇根大学的里奇斯通于2000年1月说道:“不知何故,这些黑洞在决定它们的质量时,它们似乎知道它们所处的星系的质量;或者,当星系正在形成时,它知道它周围黑洞的质量。”在量子层次上,人们早就认识到电子能知道彼此在做些什么,但在星系尺度上发生这种情况同样使宇宙学家感到既神秘又兴奋。现在,这就是一个先有鸡还是先有蛋式的争论:是先有星系还是先有黑洞呢?有些科学家认为先有黑洞,另一些科学家则认为它们是交错发展的。

回到1939年,奥本海默和斯奈德发表文章表明存在黑洞时,受到了其他宇宙学家的嘲笑。渐渐地,越来越多的科学家开始认为确实存在黑洞。但直到20世纪90年代后期,哈勃望远镜才开始清晰地观测星系,确定黑洞的存在。然而,黑洞仅仅是刚刚开始透露它们的秘密,与此同时它们又在增加新的秘密。它们是揭开宇宙如何工作之谜的钥匙,在以后相当长的一段时间内,它们所带来的答案将会跟它们所产生的复杂问题一样多。

星空中的秘密

在1543年出版的《天体运行论》中,哥白尼提出了日心学说,成功地解释了行星的视差运动,但却未能给地球的绕日公转找到确凿的证据。他明白,如果地球确实在绕日公转,生活在地球上的人们就能察觉到恒星的周年视差运动,也就是观测者在两个不同的位置观测同一个天体时所引起的方向变化,它可以用观测者所在两个不同位置的距离(基线)在天体处所张的角来表示。显然,天体越远,基线越短,所张的角越小,观测视差就越困难。300年过去了,无数天文学家力求寻找恒星周年视差位移的证据,尽管许多天文学家作了坚持不懈的努力,恒星的周年视差还是没有能找到。这个悬而未决的问题不仅成了反对日心说的神学家们坚持地心说的借口,也使一些极有声望的天文学家,包括大名鼎鼎的第谷,都对哥白尼的学说产生了怀疑。

布拉得莱发现光行差

值得高兴的是,另一些天文学家在探索恒星世界的过程中,虽然没有观测到恒星的视差,却意外地获得了几项同样具有重大科学意义的发现,英国天文学家布拉得莱发现光行差就是一个著名的例证。

布拉得莱1693年出生于英国格洛特郡的舍伯思,21岁毕业于牛津大学。他的舅父榜特是舍伯恩修道院的院长,擅长天文观测,受舅父的影响,布拉得莱对天文学也产生了浓厚的兴趣。1715年和1718年,他发表了两篇天文学方面的论文,由此名声大震,1718年被选为英国皇家天文学会会员,3年后任牛津大学天文学教授,1742年接替哈雷担任格林威冶天文台第三任台长。

位于玉夫座的车轮(环状)星系

同类推荐
  • 地球之肺——森林

    地球之肺——森林

    树木给人类提供了氧气,供人类呼吸生存,同时吸收二氧化碳维持空气的平衡。森林的重要性人人皆知。《地球之肺——森林》以形象生动的语言,开阔读者的视野,使读者对于树木对人类的影响有更进一步的了解,保护好森林,给我们一份清晰的空气!
  • 葡萄酒入门百科全书

    葡萄酒入门百科全书

    爱好葡萄酒却不知从何着手?答案在此。财新Enjoy雅趣联合两位葡萄酒界的深度合作伙伴:知味葡萄酒杂志和企鹅吃喝指南,共同推出《葡萄酒入门指南》,专为葡萄酒新手诚意编写,着眼于基本的葡萄酒品鉴知识,回答入门级葡萄酒爱好者最常问的那些问题,颇具可读性和实用性。财新Enjoy雅趣高端消费文化指南。在这里发现,生活本该如此。
  • 探索未知-化学与生命

    探索未知-化学与生命

    探索未知,追求新知,创造未来。本丛书包括:奇特的地理现象、遗传简介、生活物理现象解读、奥妙无穷的海洋、认识微生物、数学经典题、垃圾与环境、湛蓝浩瀚四大洋、生物的行为、漫谈电化学、数学古堡探险、中国的世界文化遗产、中国古代物理知识、中国三大三角洲、中国的地理风情、多姿的中国地形、认识少数民族医学、悠悠的中国河流等书籍。
  • 探究式科普丛书-人的生物学信息:人类生物学

    探究式科普丛书-人的生物学信息:人类生物学

    本书主要介绍人类起源进化和人体奥秘的科普读物。全书共有两章十四节,从人类“神创”之谜、人类演化之谜、人类进化成因、中国人类化石演化、人体经纬等几个方面作了详尽介绍。既有生动形象的图文诠释,也有问答式的小百科相应映衬;既有科学家论点的强势支撑,更有许多实例作为有力的论证。
  • 走进科学丛书:开拓进取的大科学家

    走进科学丛书:开拓进取的大科学家

    本书介绍了42位科学家的生平事迹,包括推动18世纪化学革命的拉瓦锡、给元素王国立法的门捷列夫、发现大气压力的托里拆利、被命名为频率单位的科学家赫兹、星学之王第谷以及发现海王星的天文双杰等内容。
热门推荐
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 流浪诸天的武神行者

    流浪诸天的武神行者

    金庸世界,多少人的武侠梦!逍遥子,独孤求败,侠客老祖,谁是天下第一?金庸天书,天下第一,古今中外,无出其右!如《倚天屠龙记》,应是五百年后《水浒传》!从《倚天屠龙记》开始,细细的品味每个金庸世界!品一品江湖风情,看一看众生百态。(保证更新。求收藏。)
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 王牌龙套

    王牌龙套

    灵魂穿?肉体穿?召唤?还是借尸还魂?萧大龙套的人偶模特突然变成了一丝不挂、活色生香的大美人,她自称叫周薇,职业是皇后,人称小周后,型号36D,身份是他表妹。从此,即将踏入大叔门槛的老萧撞上了剪不断理还乱的桃花劫。曾有羡慕者问他,你究竟有几个好妹妹?老萧一脸法律无法阻止的作死样说,表姐与表妹齐飞,干女共干妹一色。好吃不过海味,好玩不过表妹。好喝不过拿铁,好玩不过表姐。好听不过神曲,好玩不过干女。好闻不过玫瑰,好玩不过干妹……
  • 薰衣草之四公主的爱恋

    薰衣草之四公主的爱恋

    薰衣草之四公主的爱恋讲述的是:公主们去魔鬼岛训练,自已创业了紫魅宫和雨恋集团之后被父母召回中国去樱雪贵族学校读书,遇到王子们又会发生什么好玩的呢,敬请期待?
  • 校服的裙裾

    校服的裙裾

    仿佛一切都发生在那个冰冷、雪花纷飞的冬天。呼啸的风雪卷走了一个又一个我们憧憬的美好。而我们只能眼睁睁看着引以为珍贵的岁月被现实撕出一道道血淋淋的伤口。想挣扎,想反抗,却只能在绝望中无助的瘫软。
  • 贪恋红尘三千尺

    贪恋红尘三千尺

    本是青灯不归客,却因浊酒恋红尘。人有生老三千疾,唯有相思不可医。佛曰:缘来缘去,皆是天意;缘深缘浅,皆是宿命。她本是出家女,一心只想着远离凡尘逍遥自在。不曾想有朝一日唯一的一次下山随手救下一人竟是改变自己的一生。而她与他的相识,不过是为了印证,相识只是孽缘一场。
  • 桃花扇故事:英文

    桃花扇故事:英文

    ThePeachBlossomFamisagreatmasterpieceofKunoperaandhasbeenafavoriteofChineseaudiencesformorethan300years.Thisbook,withplainwords,intendstohelpforeignreadersunderstandthestoryandappreciateclassicChineseopera.
  • 骇之夜

    骇之夜

    传说这个星球有一种凶猛的远古生物,它们因大肆破坏生灵被星球之力牢牢的封印起来。然而,随着人类自己的私欲疯狂的消耗星球能量,被封印的凶兽们又开始卷土重来,而它们会在双月之夜的零点时分出现,吃掉它们见到了一切活物。而人们将它们出现的夜晚称之为骇夜。人们用钢铁浇筑建筑,躲过骇夜。他们在一阵阵撕心裂肺的嚎叫中祈祷着黎明的到来。但他们绝望的发现,这骇夜,越来越长~~~~~~
  • 原来你在光中

    原来你在光中

    她本是一个赢家,可世人不知她早就心死了。每次她都听到他的声音,却只是幻听罢了。这现实还是梦都已不重要……