登陆注册
45457700000014

第14章 生命科学,从1946年到现在(1)

生命的建筑师:蛋白质、DNA和RNA

在20世纪之前,在所有生命体中,一种复杂分子所起的重要作用是自然界最隐蔽的秘密之一。谁能想到一种被称为脱氧核糖核酸(DNA)的分子竟是生命的伟大建筑师?或者核糖核酸可以行使信使功能?通向发现之路是曲折而艰险的。首先,这些作用的发现要求三个独立领域的进步:细胞学(通过显微镜对细胞进行研究)、遗传学和化学。

和物理科学里的粒子物理学家一样,生命科学家也带着探索这一领域最小、最基本的单元这一问题而进入20世纪后半叶,在这个情况下,生物体的基本要素就是,蛋白质、DNA和RNA。一个新的领域就在这一探索过程中诞生,这个新的领域就是生物化学和物理学的结合:分子生物学。这是在分子水平上对生命过程的考察,一百年前甚至没有人能够想象得到,那时孟德尔的工作刚被重新发现,生物学家开始考察染色体在遗传中的作用。

米歇尔(Friedrich Miescher,1844—1895)1869年曾经在细胞核中观察到核酸的存在。19世纪80年代弗莱明发现了染色体(在细胞分裂时看到的细长结构),然而最初没有一个人认识到它与遗传有任何联系。直到1907年摩尔根开始用果蝇做实验(起初持怀疑态度),才有了对遗传及其机制的研究。到了1911年,他在哥伦比亚大学的实验室成功地证明染色体携带了遗传信息。

与此同时,在化学中,列文(Phoebus Aaron Theodor Levene,1869—1940)1909年首先发现核酸含有糖,这就是核糖。20年后,他又发现其他核酸中含有另一类型的糖,脱氧核糖,从而确定有两种类型的核酸,核糖核酸(RNA)和脱氧核糖核酸(DNA),由此开始探索这些物质的化学特性。

然而,没有人猜想到DNA会与遗传有联系。因为染色体既含有DNA,还含有蛋白质,而蛋白质显得更为复杂。因此,蛋白质似乎应该是携带遗传物质的最佳候选对象——也就是说,直到1944年,艾弗里(Oswald Avery,1877—1955)和其他一些研究者才发现,是DNA,而不是蛋白质,含有生命的遗传物质。

但是,到了1946年,事情已经明朗。所有的生命形式都要用到两种不同类型的化合物:一种储存信息,另一种根据这些信息复制有机体。后来还搞清楚了,是酶执行指令,而DNA保存蓝图,这一蓝图几乎被原封不动地复制以传给下一代。人们不知道的是,DNA靠什么样的结构,使它有可能来完成这一功能。

双螺旋

鲍林沃森是一位瘦高个年轻人,从孩提时代起就聪明伶俐、富有雄心。实际上他在12岁时就经常出现在名叫“神童”的广播节目中。15岁时沃森高中毕业,4年内在芝加哥大学取得了两个学士学位(哲学和科学)。从少年时代起,他就立志要做出一番事业使自己“在科学上出名”,幸运的是,他得以进入印第安纳大学研究生院,跟随著名遗传学家缪勒学习,并且和卢里亚(Salvador Edward Luria,1912—1991)及德尔布卢克(Max Delbruck,1906—1981)一起工作,他们两位后来都成了研究噬菌体(感染细菌的病毒)的专家。沃森在离开印第安纳后,来到哥本哈根做博士后研究。在这里,他非常偶然地遇见了威尔金斯(Maurice Wilkins,1916—2004),当时后者正在伦敦的国王学院对DNA进行X射线结晶学分析的工作。DNA是一种有机物,对它进行X射线结晶学分析(一种化学和物理分析方法)是一种令人耳目一新的做法,于是吸引了沃森的注意。正好几天之后,有消息说,当时被认为是化学界之王的鲍林(Linus Pauling,1901—1994)在加州理工学院提出了蛋白质结构的三维模型:一条螺旋。螺旋的基本形状很像弹簧或者螺旋式笔记本(尽管鲍林的模型并不太像那些东西)。

沃森遂决定去伦敦进一步学习有关DNA的知识。他设法在剑桥大学的卡文迪什实验室找到了一个位置,正是在那里遇见了物理学家克里克。克里克比沃森大12岁,正在为佩鲁茨(MaxPerutz,1914—2002)用X射线结晶法测定血红蛋白的结构,他的物理学背景为这一领域带来了新的视角。

沃森立即对克里克想到的方法发生了兴趣,两人似乎有惊人的默契。当他们交谈时,互相顺着对方的思路说下去,他们还找到了同样的爱好。通过略施小计(沃森的奖学金本来该用于在哥本哈根学习),沃森在1951年来到卡文迪什实验室和克里克一起工作。但是,他们不能公然研究DNA的结构。那被看成是威尔金斯的领地,卡文迪什实验室不想得罪威尔金斯。因此,他们利用业余时间做这些工作。

关于DNA已有少量信息被获知。从威尔金斯的同事罗莎琳德·富兰克林(RosalindFranklin,1920—1958)已经获得的X射线晶体分析照片来看,DNA仿佛也形成了和蛋白质一样的螺旋。还有,已知DNA是由核苷酸长链组成,链条交替含有糖和磷酸基。碱基沿着糖依次排列。威尔金斯的工作还证明(令人惊奇)整个分子在长度上是稳定的。

克里克和沃森一开始想要搞清楚的是,为什么组成分子的原子竟会排列成如此规则的结构,使得分子在化学上稳定,而且允许它能够精确地自我复制。也就是说,这一切何以能够装配得如此之精巧?有几条螺旋?究竟碱基是怎样排列的?螺旋是否靠向外突出的碱基来支撑?

沃森参加了富兰克林的报告会,在报告中富兰克林讨论了她获得的主要数据。富兰克林曾经在巴黎学习过X射线衍射技术,工作相当仔细和精确,在不同程度的湿度情况下比较结果。她发现她的照片总是显示分子具有螺旋形式,但是她希望在得出螺旋结论之前,对各种条件下的情况进行更全面的测试。再有,即使富兰克林得到了更清晰的衍射照片,但复杂结构的细节仍然很难探测。不过她还是尽可能详细地描述了她所见的一切,并且相信:糖和磷酸基——螺旋的骨架处于外侧,而碱基则位于内部。她说,所有这一切都纯属猜测。沃森听得很认真,但没有做笔记,只靠他非凡的记忆力来记忆数据。

沃森带着头脑里记住的富兰克林演讲中的数据回到剑桥,他和克里克都很乐观,认为他们离建立模型已经不远了。他们开始着手工作,但是沃森一下子想不起富兰克林的准确数据。首先,他记不得富兰克林所给出的DNA的含水量,根据富兰克林的估计,DNA中每个核苷酸周围大约是8个水分子。沃森想到的却是,她说的是DNA分子的每一段有8个水分子——含水量大大减少了。甚至,他记不得富兰克林说过的碱基的位置。他和克里克提出了一个由3个多核苷酸链组成的模型,其中糖-磷酸键位于内侧,而碱基位于外侧。这一排列方式与沃森从伦敦带回的数据相吻合,他们确信自己已经解决了问题,就在开始工作后的24小时。

第二天,他们邀请威尔金斯和富兰克林以及其他几位同事,对他们的模型发表意见。富兰克林的发言使他们大为泄气。富兰克林立即看出错误是由于引用了不正确的数据,当即指出了这一点。按他们的思路构造的分子不能拥有它实际上的含水量。

沃森和克里克彻底失去了信心,沮丧万分。

但是他们无法放弃DNA。不久叉听到来自鲍林的消息。他们得知鲍林也许正在从事同样的课题,但是他们也听说鲍林正沿着错误的方向工作。

有几个主要的问题仍未解决:在一个分子里有几条螺旋缠绕在一起?碱基是在内部还是在外侧?富兰克林认为是在内部,如果是这样,它们又是怎样排列的呢?今天的研究者可以把某些方程式输入计算机,得到某些能够成立的模型。20世纪50年代可没有这么容易。于是克里克请来一位朋友,数学家格里菲斯(John Griffith),研究四种碱基相互吸引究竟有多少种方式。格里菲斯发现,在既定的受力之下只有两种组合:腺嘌呤与胸腺嘧啶,胞嘧啶与鸟嘌呤。

碱基对之谜的第二条线索源于克里克与沃森和生物化学家查伽夫(Erwin Chargaff,1905—2002)的一次偶然午餐谈话。查伽夫来自哥伦比亚大学,他提及三年前他曾经发表过“11定律”,对于任何想要探究DNA结构的人来说,这也许是一个值得关注的现象。不幸的却是,沃森和克里克对此却一无所知,他们窘迫万分,只好承认无知。查伽夫说他的发现是通过测试多种不同的机体组织后才得到,亦即胞嘧啶与鸟嘌呤总是等量(按11的比例)出现,而腺嘌呤与胸腺嘧啶也是等量出现。也就是说,不管是什么物种——不管DNA采自鱼类,还是哺乳动物或爬行动物——这一比例都是一样的。

克里克很快就认识到,查伽夫的11定律和格里菲斯的数学计算都是指路标。DNA里的碱基一定是以特殊的方式互相配对:腺嘌呤配胸腺嘧啶,胞嘧啶配鸟嘌呤。

但是克里克和沃森仍然无法做出真正的进展。他们没有和该领域所得到的前沿数据保持联系——因为富兰克林和威尔金斯,这两位关键研究者,和他们没有通信联系。(事实上,威尔金斯和富兰克林相互间在工作上也缺乏联系,也很少谈话,虽然人们以为他们是在一起工作的)当然,克里克和沃森并不是正式在DNA领域里工作,他们解决问题的方法——构筑模型,然后试着把模型与数据匹配——这种做法对于富兰克林以及其他许多人来说,似乎是本末倒置。

随后传来爆炸性新闻。鲍林提出了一种DNA结构。他的儿子彼得当时正在剑桥做研究工作,与美国同事沃森甚为友好。因此,当他收到父亲1953年1月关于DNA结构的论文复本时,他转给了他的朋友。克里克和沃森紧张地翻阅论文——难道鲍林已经抢先获得了成功?

情况恰恰不是这样。鲍林假设的是三链螺旋模型,碱基处于外侧而不是内部。克里克和沃森确信,这样的排列是不正确的。这篇论文还有其他一些错误,两个年轻的科学家对此大为诧异。

他们仍然有机会。沃森决定走动一趟,利用伦敦的研究作为借口,和威尔金斯会面。这一决定——有点像是不那么体面得到的意外好运——给这两位求胜心切的年轻科学家提供了关键线索。情况恰好是,当沃森抵达国王学院时,威尔金斯正在忙碌,于是沃森转而先拜访了富兰克林。他拿出鲍林的论文给富兰克林看,富兰克林看后甚为恼怒,尽管不知理由何在。沃森猜测那是因为她并不认为DNA分子会以螺旋形式存在。但这也许不成为理由,因为富兰克林已经知道,至少有一种DNA是有螺旋结构的,这一点很快就水落石出。沃森试图证明鲍林的模型与他们两人最初那失败的模型是相似的。这可能激怒了她,似乎像是在证明她曾经出过错。她生气,也许因为这个被认为不是从事DNA工作的沃森,竟有一份鲍林的论文,而加州的同行却没有送一份给她——一位DNA研究者。

无论如何,按照沃森的说法,威尔金斯正好在这个时候进入房间,沃森声称他担心(相当可笑的担心)富兰克林会随时对他大打出手——在他们离开富兰克林的办公室后,这个6英尺高的小伙子对威尔金斯这样说,自从富兰克林来到国王学院之后,威尔金斯就和富兰克林相处得不好,他似乎以为沃森和他自己一样也面临着富兰克林的愤怒,他已经不止一次遭遇到这种情况了。

这一事例令人遗憾地表明,科学发现,和其他人类活动一样,可以因为人类的忌妒之心或误解而不时节外生枝或从中受益。现在,在发现做出后的几个月,威尔金斯终于告诉沃森,说富兰克林最有用的突破之一是她发现了DNA有两种类型,她称之为A型和B型。她从来没有想到从A型照片可以得到螺旋结论,而新的B型则不同,明显地呈现了螺旋形式。

沃森非常激动。他能够看到一张B型照片就好了,他需要知道。后来的事情表明,威尔金斯已经秘密复制了富兰克林的全部照片,因为生怕她在几个月后会另谋他职,也许会带走她在国王学院做的全部工作资料,什么也不给他留下。无疑,由于他们之间已相处得如此糟糕,他没有勇气要求复制。不过,他还是偶然得到了富兰克林的一张复印照片,这就是现在著名的第51号照片,这张照片清楚地显示了B型结构。

“我一看照片,立刻目瞪口呆,心跳开始加快。”沃森后来在他描述这一时期的自传《双螺旋》(TheDouble Helix)中写道:“无疑,这张图片比以前得到的(‘A型’)要简单得多。而且,只有螺旋结构才会呈现出照片上那种醒目的交叉形黑色反射条纹。”

克里克和沃森终于得到了他们所需的关键材料。根据富兰克林的第51号照片,他们决定重新考虑双螺旋结构,在经过长达5个星期的反复试验之后,他们得到了新的模型。

他们提出的DNA分子由两条互相缠绕的螺旋组成,很像一条螺旋式楼梯,各个阶梯由配对的原子键组成。碱基相互配对,位于两条平行螺旋的内侧。然后在复制时,DNA螺旋的两条链在染色体分裂前断开,使碱基可以自由地再次配对。双螺旋的每一单链都是新生链的模型或者模板。在细胞分裂时,每条DNA双螺旋都会分成两股单链,每股单链都会合成另一条互补单链。通过碱基的不断配对(只有同一种方式),DNA得以精确地复制自身。

沃森一克里克的DNA模型是如此之漂亮,以致几乎立刻被人们接受。他们成功了!新的DNA模型使人们能够直观看到,它是如何指导其他分子的建造的。一个物种之所以能够不断生殖,其基本原理终于被发现了。这个时刻是1953年的4月。

沃森、克里克和威尔金斯在1962年荣获诺贝尔生理学或医学奖。(富兰克林在颁奖之前的1958年死于癌症,由于诺贝尔奖从不给逝者颁奖,她失去了分享荣誉的机会。)鲍林在1954年由于化学键的工作获得诺贝尔奖,又在1962年由于反对大气核武器试验而获得诺贝尔和平奖(这使他成为继玛丽·居里之后,历史上第二位获得两个诺贝尔奖的人)。

同类推荐
  • 蓝色童话书

    蓝色童话书

    《蓝色童话书》是一本26篇童话组成的小集子,由著名学者、童话创作人安德鲁·兰编著。收录了著名童话《海厄辛思王子和可爱的小公主》《艾哈迈德王子和帕里巴诺仙女的故事》《菲莉西娅与石竹盆花》《金发公主的故事》……那些美丽动人的想像伴随多少人走过他们的童年?那些扬善避恶、催人进取的情节是多少人认识世界的第一步?在这个集子中安德鲁·兰先生将为我们展现他的彩色神奇世界。
  • 伴随孩子成长的经典寓言

    伴随孩子成长的经典寓言

    寓言是一种蕴含着深刻教育意义的小故事,是人类社会文明的结晶。它通过会说话的精灵、蠢笨的小动物们和各种人物之间发生的故事,使原本没有生命的物体在寓言故事中呼之欲出、栩栩如生。
  • 魔法火柴

    魔法火柴

    这是李牧雨《校园树精灵》系列的第一本,故事围绕一个五年级男孩李小鲤展开。故事开头,李小鲤在一棵大榕树下写了一封树叶信,寄托对死去父亲的思念,丢进了一个隐秘深邃的小树洞。然后他意外地得到了大树的回信。不久之后,他好心帮助了一个乞丐一样的男孩,这个人其实是树精国的亨利王子乔装打扮的,树叶信就是他用魔法传送的。两人成为了好朋友,亨利王子交给他一盒魔法火柴,能让父亲的灵魂显形,并藏在他的书包里面。有了爸爸的帮助,李小鲤的成绩、运动天赋、交友等发生了奇妙的改变……
  • 葛冰动物童话:角斗兽

    葛冰动物童话:角斗兽

    皮皮在一个废弃的小火车站里,遇到一只茶杯狗。它把皮皮领到一节车厢里面,在这里皮皮发现了一头怪兽,而这节车厢竟然是连接另外一个空间……角斗城的时空转换器,那里科技发达,都是猿人。时空转换器启动了。……皮皮都会经历哪些神秘的危险呢………
  • 关爱孩子进取的道理故事

    关爱孩子进取的道理故事

    写在前面的话在孩子们眼里,整个世界多彩而奇幻,他们那童稚的心灵迫不及待想要去了解、去探索。这些神……
热门推荐
  • 十罗刹

    十罗刹

    元朝末年,汉道衰微,仁人志士亟欲恢复华夏。少年杨六受托将失落的传国玉玺带回中原,一场腥风血雨随之而起。元廷残酷镇压,豪杰自相倾轧,十罗刹受戒于末世,是沉沦于无常无明之漩涡,还是终究涅槃看破六道幻灭……
  • 一叶知暮

    一叶知暮

    当叶知言遇到苏暮,他就知道这辈子已经栽在她手里了。
  • 张狂岁月

    张狂岁月

    这里我要讲述的故事你可以把它当作是一件真实发生过的事件,也可以完全把它当做只是一位软弱少年的美好空想。总之,随便你——金色的狼
  • 盛世绝爱:倾城猎命师

    盛世绝爱:倾城猎命师

    摄政女王李令月与对头同归于尽后,魂穿大胤智障公主龙瑾,此公主痴恋神武将军拓跋野,得罪了将军的心上人,将军一怒之下将傻子公主易容改面,偷梁换柱,送给神秘恶魔当床奴,从此大胤王朝最尊贵的人儿跌入命运最底层。摄政女王大怒:“欺人太甚!且看我给你报仇,欠了我的给我千倍百倍还回来。”
  • 首席上瘾:天才儿子神偷妻

    首席上瘾:天才儿子神偷妻

    “这就是当年你偷我的代价。”他俯身将她禁锢,“代价就这么点吗,没关系,赶紧办完你的事情,老娘我还很忙。”曾经迫于家族压力出去找男人生子,不就是看中他的外表体格,然后在黑道放言偷他的人吗,当然最后成功了,“哦?这点惩罚力度当然不够,以后你别想再逃离。”
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 狂医凰妃

    狂医凰妃

    大婚受辱,国公府嫡女慕千璃含恨而死。再睁眼,她是来自现代的战地狂医——慕千璃!一根银针,活死人,肉白骨,世人曰:慕神要你三更死,阎王不敢留五更!面对侮辱,她大笔一挥,高高兴兴坐了回头轿!从此,虐渣男,撕婊妹,斗后妈,惩渣爹……
  • 拽少爷吻上野蛮俏千金

    拽少爷吻上野蛮俏千金

    她一个天才超级美女,竟然会被可恶的爹地妈咪逼婚。有没有搞错,她可是智商美貌集于一身的时尚美女,她要把握自己的幸福。为了躲避家里的“追兵”展开了一场爱情逃亡游戏。疯狂的她立下军令状,三年内找到自己喜欢的人,不然就乖乖投降,乖乖的被绑回学校,当遇到校园三大拽少,游戏才刚刚开始……
  • 落日焚天

    落日焚天

    这命运在我看来不合理,这规则不符我心!这道在我心中无情!既然天道不仁,吾因何须顺天?总之都是修行,又岂是一个逆字了之?