登陆注册
45062200000005

第5章 叶

叶是维管植物进行光合作用的主要器官。典型的叶由叶片、叶柄和托叶组成。叶片是叶的最重要的部分,一般为薄的扁平体,这一特征与它的生理功能——光合作用相适应。在叶片内分布着叶脉,叶脉具有支持叶片伸展和输导水分与营养物质的功能。叶柄位于叶片基部,并与茎相连。叶柄的功能是支持叶片,并安排叶片在一定的空间位置,以接受较多阳光和联系叶片与茎之间水分与营养物质的输导。托叶位于叶柄和茎的相连接处,通常细小,早落。托叶形状因种类而异,例如梨树的托叶呈线形;豌豆的托叶很大,呈叶片状;洋槐和酸枣的托叶变为刺;蓼科植物的托叶包围着茎节基部叫做托叶鞘。

植物的叶如果具有叶片、叶柄和托叶的叫做完全叶,例如桑、豌豆、苹果、桃和棉花的叶。有的植物叶并不全具有这3部分,如丁香的叶没有托叶,莴苣的叶没有托叶和叶柄,叫做不完全叶。

单子叶植物的禾本科和兰科,它们的叶没有叶柄和托叶而有叶鞘。禾本科植物的叶鞘包裹着茎秆,有加强茎的支持作用和保护叶腋内幼芽的功能。

裸子植物的叶也是多种多样的。苏铁(俗名铁树)为大型羽状复叶,丛生于茎的顶端,银杏叶为扇形,松柏类植物的叶则为针形和鳞片状。

从广义讲,凡是适应于进行光合作用的结构都可以叫做叶,例如低等植物中的某些藻类,植物体适于光合作用的扁平部分(例如海带的带片),或是藓类植物体上的“叶”都可以称为叶;从狭义讲只有维管植物才具有真正的叶。由系统发育的观点来看,真正的叶又分为两个类型:原始类型只见于一部分蕨类植物,如石松、卷柏和松叶蕨,它来自茎的表面突起,叶片小而叶脉不发达,称为小型叶,大多数维管植物具有由枝系统变异而成的大型叶,叶片较大而且有发达的叶脉。

一、叶的形态

叶的形态特征主要表现在叶片的大小和形状。不同种类的植物有很大的不同。叶片的长度由几毫米到几米(如棕榈、香蕉的叶片),王莲的巨大漂浮叶直径达两米,可载一个小孩。叶的形状变化更大,叶片的形状,包括叶缘、叶尖、叶基以及叶脉的分布等,每种植物都有其特点。叶在形态上的多样性,是植物种类形态特征的重要方面。

每个叶上只有一个叶片的叫做单叶,像蓖麻、苹果、南瓜、向日葵和玉米等。叶柄上有两个以上的叶片的叶叫做复叶,例如落花生叶柄上具4小叶、三叶橡胶具3小叶。复叶按小叶排列方式的不同又可分为羽状复叶和掌状复叶,例如合欢的叶为羽状复叶,大麻的为掌状复叶。

各种植物的叶在茎上都有一定的着生次序叫做叶序,叶序有3种基本类型,即互生、对生和轮生。

在茎上每一节只生有一叶的叫互生叶序。互生叶序的叶子成螺旋状排列在茎上。如果任意取一个节上的叶为起点,螺旋而上,追溯到与起点叶在同一垂直线上的另一叶。同一垂直线上的两叶(起点叶与终点叶)之间的螺旋距离叫做叶周。叶周中有一定数目的螺旋圈数和一定数目的叶。如果把螺旋圈数作为分子,把螺旋圈数内的叶数为分母,则互生叶序的公式可为:1/2、1/3、2/5、3/8等。1/2表示互生叶每隔半周(180°)长出一叶,如榆树、椴树的叶序;1/3表示每隔1/3周(120°)长出一叶,如梨树的叶序;2/5表示每隔2/5周(144°)长出一叶等等。

茎的每一节上有两叶相互对生叫做对生叶序,例如丁香、薄荷等。在对生叶序中,下一节的对生叶常与上一节的叶交叉成垂直方向,这样两节的叶片避免相互遮蔽。

茎的每一节上着生3个或3个以上的叶,排成轮状,叫做轮生叶序。夹竹桃、金鱼藻的叶序为轮生叶序。

虽然每种植物叶的形态都有其特点,但许多植物在个体发育过程中,可以出现不同形态的叶。例如子叶是植物体最早形成的叶片,其形态与正常叶不同。又如桉树幼小树苗的叶为卵形无柄的对生叶,老株的叶为披针形有柄互生叶。

二、叶的发育

一般叶在芽中已经形成,它的发育开始于茎端生长锥的叶原基。叶原基初形成时,它的所有细胞还都是原分生组织的状态。在发育过程中,细胞逐渐过渡到初生分生组织。

叶的初生分生组织也和根、茎一样,分为原表皮层、基本分生组织和原形成层。在幼叶上不再保留原分生组织,因此整个幼叶在发育过程中全部成熟,不像根与茎中还保留着原分生组织组成的生长锥。

在叶原基形成幼叶的过程中,先有顶端生长使叶原基成细长的柱形,然后是边缘生长形成叶的雏形,分化出叶片、叶柄和托叶几个区域。大多数幼叶叶片的生长基本上是等速生长,但幼叶各部分向各方向生长的速度并不完全一致,因而叶片的形状在生长过程中,由于各部分细胞分裂和细胞扩展的不同,可以发生变化形成各种形态特征。

叶的生长期有限,在短时期内达到一定大小后,生长就停止。但有些植物在叶基部保留有居间分生组织,可以有较长的生长时期。像禾本科植物的叶鞘能够随着节间生长而伸长;葱、韭菜的叶割去上部叶片,叶仍继续生长,这都是由于居间分生组织活动的结果,但这些部分也不是始终保持生长能力,过一定时期后,居间生长也就停止。

三、叶的结构

被子植物叶片的结构一般比较一致,是由表皮、叶肉和叶脉三部分所组成。

叶片是有背腹之分的扁平体,表皮也有上下表皮之分。表皮是由一层生活细胞所组成,但也有少数植物叶片表皮是多层细胞的结构,称为复表皮。如印度橡皮树可有3~4层细胞、夹竹桃可有2、3层细胞组成的复表皮。叶片的表皮细胞一般为形状不规则的扁平体,侧壁凸凹不齐彼此互相嵌合、连接紧密,没有细胞间隙,其外壁较厚,角质化,并具角质层,有的并有蜡质。

在叶片的表面还常有表皮附属物——毛和气孔(器)。叶肉由含有许多叶绿体的薄壁组织细胞组成,是绿色植物进行光合作用的主要场所。一般植物的叶片中叶肉明显地分为2部分:①栅栏组织,位于上表皮之下,细胞呈圆柱形,其长径与表皮成垂直方向排列;②海绵组织,位于栅栏组织和下表皮之间,细胞呈不规则形状。栅栏组织和海绵组织细胞内含有大量叶绿体,都有着发达的细胞间隙,构成了庞大的通气系统,并与表皮的气孔相通连。有些植物如桂花和茶树叶片的叶肉组织中,有石细胞存在。

叶片中的维管束叫做叶脉,叶脉在叶片上的分布形式一般分为两大类:网状脉序和平行脉序。网状脉序的特点是叶脉错综分枝,连结成网状,是双子叶植物叶脉的特征。网状脉序因中脉分出侧脉的方式不同,又可分为羽状脉序和掌状脉序。苹果、夹竹桃、枇杷等植物为羽状脉序;南瓜、葡萄、槭树、蓖麻等植物为掌状脉序。平行脉序是中脉和侧脉自叶片基部发出,大致互相平行,至叶片顶端汇合,它是大多数单子叶植物叶脉的特征。

裸子植物中的银杏具有另一种类型的叶脉,叫做叉状脉序,叶脉为二叉分枝式,这种脉序也常见于蕨类植物。

各级叶脉的结构并不相同,大型叶脉,如中脉和大的侧脉是由维管束和机械组织组成的。维管束也和茎中的一样,有木质部和韧皮部,在它们之间还常具有形成层,不过形成层的活动期有限,只产生少量的次生结构。在维管束的上、下方还具有许多层机械组织,这些组织在叶片的背面(远轴面)特别发达,因此中脉和大的侧脉在叶片的背面形成显著的突起。中脉越分越细,结构也越来越简单。首先是形成层消失,机械组织逐渐减少或消失,到了叶脉的末梢,木质部只有管胞,韧皮部也只有短而细的筛管分子和增大的伴胞。

许多植物的小叶脉中有特化的具有吸收和运输功能的传递细胞。这些传递细胞有着不同的类型,来源于不同的薄壁组织细胞。但结构上有着共同的特点,都具有向内生长的细胞壁。质膜紧贴着向内生长的细胞壁,使传递细胞的原生质体的表面积与体积的比例增大许多倍,因而能够更有效地进行输导与转运的作用。

叶脉的维管束不与叶肉细胞直接接触,而是被几层排列紧密的细胞所隔开,就是在叶脉末梢也有1~2层细胞包围,这层细胞称为维管束鞘。在光合作用中不同碳固定途径的C3、C4植物,它们的维管束鞘结构不同。C3植物,如玉米、甘蔗等叶片维管束鞘的外围,排列紧密的一圈细胞中含有形状大,缺乏基粒的叶绿体,组成了“花环型”排列。C3植物如小麦、水稻等叶片维管束鞘细胞就没有这种结构。双子叶植物C4型的苋菜、大滨藜叶片维管束鞘细胞中,也有类似玉米、甘蔗的结构。

四、叶的生态类型

叶是植物暴露在空气中面积最大的器官。植物演化过程中适应不同的生境(特别是水)产生各种形态结构。依照植物与水分的关系,把植物分为旱生植物,中生植物和水生植物。

旱生植物的叶小而厚或多茸毛,在结构上表皮细胞的细胞壁厚,角质层发达。有些种类表皮为复表皮而且气孔下陷,例如夹竹桃的叶。另一种类型的旱生植物叫做肉质植物,它们的叶片肥厚多汁,叶内有发达的薄壁组织,贮存大量水分。例如芦荟、景天、马齿苋等。仙人掌的叶片退化,茎肥厚、多浆呈绿色,代替叶行光合作用。

中生植物就是前面所讲的最常见、最普遍的类型。水生植物中许多类型是整个植物体浸没在水里,叶外形小而薄(例如黑藻),或成丝状(如狐尾藻)。沉没水中的叶表皮细胞外壁不角质化,没有角质层或角质层很薄,细胞内具叶绿体。叶上没有气孔。叶肉只有少数几层细胞,没有栅栏组织的分化。叶内有发达的通气组织。维管组织退化(特别是木质部),机械组织不发达。另外一些水生植物,植物体仅一部分浸没在水中,叶露出水面。其叶的结构除有发达的通气系统外,基本上与中生植物叶相似。

光也影响着叶片的结构,生长于直射阳光下的植物(称为阳地植物),受光和热比较强,四周空气比较干燥,其叶倾向于旱生的形态结构,而生长于荫蔽环境的植物(称为阴地植物)阳光漫射,环境阴湿,一般叶片大而薄,栅栏组织不明显,细胞间隙发达。在同一株植物上的不同部位的叶片,由于所处的环境不同,其形态结构也出现差异。位于植株顶部的叶倾向于阳生叶的结构,树冠下荫蔽处的叶倾向于阴生叶的结构。

五、叶的变态

有些植物叶的形态结构和生理功能,在本质上都发生了非常大的变化,叫做叶的变态。如仙人掌的全部叶子变为刺状,以减少水分的散失,适应干旱环境中生活;酸枣、洋槐的托叶变成坚硬的刺,起着保护作用;豌豆复叶顶端几片小叶变为卷须,攀缘在其他物体上,补偿了茎杆细弱,支持力不足的弱点。食虫植物的叶能捕食小虫,叫做捕虫叶,这些变态的叶有的呈瓶状,如猪笼草;有的为囊状,如狸藻;有的呈盘状,如茅膏菜。在捕虫叶上有分泌黏液和消化液的腺毛,当捕捉到昆虫后,由腺毛分泌消化液,将昆虫消化并吸收。

许多植物在其个体发育过程中,有的叶也发生变态,有着特殊功能。例如木本植物芽的外围,有由叶变态的芽鳞包围,起着保护幼芽的作用;鳞茎中的变态叶肉质化、贮藏营养物质,如洋葱、百合的食用部分。在花和花序的基部也有变态的叶,例如玉米雌花序外面的苞叶、向日葵花序外边的总苞,具有保护幼小花和花序的作用。

六、落叶

叶子并不是长久地生长在植物体上,而是有一定的寿命。一般一年生植物,叶子随着植物体一起死亡。多年生草本植物和落叶的木本植物,其叶子的寿命只有一个生长季。常绿的木本植物,叶的寿命可以有几年。

多年生草本及木本植物,它们落叶时产生离层以后,叶子就由这里脱落。

当植物即将落叶时,叶子内部发生很大变化,细胞中有用物质逐渐分解运回茎内。叶绿体中叶绿素分解比叶黄素快,叶片逐渐变黄。有些植物在落叶前细胞中有花青素产生,绿叶变为红叶。与此同时,在叶柄基部有一层细胞进行分裂,形成几层小型的薄壁组织细胞,这层结构叫做离层。不久这层细胞间的中层分解,继而整个细胞分解,叶片逐渐枯萎,以后由于风吹雨打等机械力量,使叶柄自离层处折断,叶子脱落。在离层折断处的细胞栓质化,起着保护“伤口”的作用。叶脱落后,在茎上留有的疤痕,叫做叶痕。

离层不仅产生在叶柄上,也可产生在花柄和果柄上,便于花和果实的脱落。

七、叶的经济用途

许多植物的叶子,在人类生活中起着重要的作用,如白菜、洋白菜、菠菜、芹菜和韭菜等都是叶菜类蔬菜;茶树的叶为我国主要的饮料;烟草叶为制卷烟的原料,藿香、薄荷等植物的叶为常用的中草药;剑麻叶中的纤维为重要的制绳原料。此外,由于庞大的叶面积同空气接触和进行活跃的气体交换,因而一些植物的叶片有指示环境污染的作用。从叶片上受害的斑点、伤痕指示出空气中存在过量的S2-、氟、臭氧等。有的植物叶片具有吸收空气中有害物质的作用。通过蒸腾作用,叶还具有降低气温、增加空气中湿度的作用。

同类推荐
  • 数学教学的趣味现象设计

    数学教学的趣味现象设计

    《最新学校与教育系列丛书:数学教学的趣味题型设计》针对学生在学习数学中出现的问题,针对数学教学的趣味题型设计,有步骤、有梯度地引导学生学会从不同的角度去分析问题和解答题目,增强学生“举一反三”的意识,《最新学校与教育系列丛书:数学教学的趣味题型设计》激发学生学习数学的兴趣,增强学生学好数学的信心。
  • 未解之谜

    未解之谜

    《我的第一套百科全书:未解之迷》以知识性和趣味性为宗旨,全方位、多角度地展示各领域最有研究价值、最具探索意义和最为人们所关注的世界未解之谜,分为神秘宇宙、远古文明、帝王之谜、后宫之谜、生命探奇、军事之谜、神秘宝藏、文化迷踪、科学奥秘、动植物之谜等13部分,信息含量大,内容丰富。
  • 奇异有趣的动物世界(新编科技大博览·B卷)

    奇异有趣的动物世界(新编科技大博览·B卷)

    由于全书内容涵量巨大,我们将其拆为A、B两卷。A卷包括:形形色色的现代武器、精彩绚丽的宇宙时空、日新月异的信息科学、握手太空的航天科技、穿越时空的现代交通、蓬勃发展的现代农业、日益重要的环境科学、抗衡衰亡的现代医学、解读自身的人体科学、走向未来的现代工业,共十卷。B卷包括:玄奥神秘的数学王国、透析万物的物理时空、奇异有趣的动物世界、广袤绮丽的地理、生机百态的植物世界、扑朔迷离的化学宫殿、蔚蓝旖旎的海洋、探索神秘的科学未知,共八卷。
  • 倾听野人诉说

    倾听野人诉说

    我们人类还没有完成对角身的认识,而野人问题却又出现了。野人或许是人类的特殊生存群体,或许是未被驯服的人类,也或许我们就是野人进化而来。野人是我们的同类吗?我们怎样现他偿共生共存呢?认识野人,能够加深对我们人类的了解。
  • 怎样做好电工

    怎样做好电工

    本书以问答的形式介绍了电工的基础知识和电工安全技术,包括电工常用的工具、如何正确阅读电气原理图、如何分析电气事故的原因等内容。
热门推荐
  • 星河记之帝国皇道

    星河记之帝国皇道

    “远方使我心痒难耐,念念不忘,我渴望驶向未知的大海。”——赫尔曼·梅尔维尔《白鲸》人类世界在战争的重压下分崩离析,人群奔走,救亡图存,时代的洪流裹挟着仇恨,命运的齿轮缓缓转动,十字路口出现在人类的面前。皇道兴衰,新的时代即将到来。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 紫气东来顺

    紫气东来顺

    阿东幼年丧父,母亲改嫁;自己经过努力成为本村首富,却在抗美援朝的时候被人陷害唯一的儿子为了换取阿东的正常生活自愿参加抗美援朝。阿东带着孙子一起长大,80年代儿子终于回家探望,此后便成永别。
  • 碧葫奇缘

    碧葫奇缘

    这里有仙魔妖鬼的争斗,有精怪灵物的传奇,有洞天世界的探险,亦有万千界域间的交融碰撞。一个被神奇葫芦传送至此的地球灵魂,走上了通往逍遥绝顶的孤峰险路。
  • 从创造超凡开始

    从创造超凡开始

    “是否开始创造超凡?”一款名为【创造超凡编辑器】的APP弹出一个选项,邹树看着手机里的这个APP感觉似乎有点不明觉厉。怎么创造超凡呢?
  • 女王大人,你好

    女王大人,你好

    朋友说:“我们的女王大人已经怀孕了,不知道怀了谁的孩子,谁现在娶了她,谁就是接盘侠。”女王大人说:“想都不要想,我不会叫你的妈妈为妈妈,因为咱们的结婚协议上没有写这条。”女王大人说:“你要是有任何的生理要需求,请自行解决,姐没空陪你。”女王大人说:“你说你度了蜜月都差点挂掉,害的我刚结婚就差点成了寡妇。”女王大人说:“保时捷车撞坏了,你要付修理费,因为是我投的保险。”我说:“娶你是我一生的梦想,但是没想到娶了你,我的梦想还在,一生可就没有了。”
  • 这个游戏怎么破

    这个游戏怎么破

    夏娇娇最近对一款爱情攻略游戏上瘾,可作为低端玩家没有一次攻略成功。就在她心灰意冷准备卸载的时候她居然穿越到游戏里,系统告诉她只准成功不许失败。
  • 五味书院

    五味书院

    嬉笑怒骂,一段鸡飞狗跳的学院时光,因为喜欢,自甘平淡。一旦离开,放弃原本的执着……“真不负了你修罗之名”默然一笑,仗剑而归,踏着尸谷血海,仰望天地穹苍,断壁残垣间,狂风扬,歌一曲绝世。
  • 床上有个苏妲已

    床上有个苏妲已

    就把这个当一部情景喜剧看,完全恶搞搞笑别太较真。请大家支持《麟龙变》谢谢。
  • 英雄不死

    英雄不死

    1938年5月,厦门军民浴血奋战四天,但日本侵略者的铁蹄还是踏上了厦门这个小岛。厦门沦陷后。日本侵略者的烧杀掳掠使厦门人民陷入了水深火热的灾难中。守军终因武器、兵力悬殊太大,被迫弃守。一个民间自发组织的血性抗日团体,奋勇迎敌,与日军展开短兵相接的巷战。浴血奋战四天。厦门沦陷,战争远远没有结束,抗战组织转入地下,与日军展开了长达数年的正侧面抗争。而这支神秘的抗日组织到底是民众自发还是共产党领导的部队,至今都是一个谜!《英雄不死》适合军事小说爱好者阅读。