登陆注册
34274300000035

第35章 生理大发现(9)

孟德尔的论文被登在布尔诺自然研究会会刊上,这个会刊与全世界120多个研究机构和高校有交换关系,于是,孟德尔的论文随之被送到了世界各地。不幸的是,它仍然没有遇到一个知音,而被放在书架上,蒙上了一层厚厚的灰尘。

只有孟德尔坚信他的发现与进化论一样有巨大意义,他对他的一位朋友说:“我的时代一定会到来。”

这一天终于来到了,这就是文章一开始讲的那个故事。

孟德尔的发现完全可以与他同时代的达尔文的进化论相媲美,他为现代遗传学奠定了第一块基石。

从遗传因子到基因

孟德尔的遗传定律重新被发现之后,人们自然而然提出了这样的问题:究竟有没有遗传因子这种物质?有的话,它存在于生物体的什么地方?是由什么组成的?细胞学的发展,使人们把遗传因子和染色体挂上了钩。

就在孟德尔的那个时代,借助显微镜的帮助,生物学家们已经发现了细胞,还有细胞的分裂现象。

1879年,德国生物学家弗莱明发现,用苯胺染料可以把细胞核里一种物质染成深色,这种物质被称为染色质,后来人们给它起名为染色体。1882年,弗莱明观察到,当细胞分裂时,染色体聚集成丝状,分成数目相等的两半,并形成两个细胞核。

假如当时孟德尔的研究成果能够出名的话,弗莱明及其继承者很可能会发现染色体与遗传因子有关。可惜当时孟德尔的发现没能引起人们的重视。直到20世纪初,孟德尔的定律重新被发现之后,人们才把染色体与遗传因子联系在一起。

那时,许多生物学家已经注意到,每种生物都有特定数目的染色体,在细胞分裂时,染色体能准确无误地自我复制,人们自然而然想到染色体很可能与遗传的奥秘有关。

1902年,美国哥伦比亚大学著名细胞学家威尔逊的研究生萨顿发现,在显微镜底下看到的染色体的分离与组合行为,与孟德尔遗传定律中的分离组合行为有着惊人的一致。在体细胞中,染色体像遗传因子一样也都是成对存在的。而在精子、卵子中,染色体数目只有体细胞染色体数目的一半。精卵结合,形成受精卵后,染色体又恢复到原来的数目,每对染色体,一半来自父本,一半来自母本。萨顿因此大胆提出,遗传因子就在染色体上。由于染色体的对数远小于遗传特征的数目,因此,他预料一个染色体上可以有好几个遗传因子。

1909年,荷兰遗传学家提出用基因这个术语来代替遗传因子,基因这个词就被生物界沿用下来了。

摩尔根的基因论

萨顿的假说一提出,立即遭到科学界绝大多数人的非议,因为它毕竟是推理,缺乏实验的根据,而当时生物学刚刚从以描述和推理的研究方法为主转入以精确实验为主的阶段。用实验证实染色体与基因关系的是美国生物学家摩尔根,而他一开始也是萨顿和孟德尔学说的怀疑者。

摩尔根的家世与孟德尔相反,他于1866年出生在美国肯塔基州一个名门望族的家庭,从小就受到良好的教育。

1886年,摩尔根考入霍普金斯大学研究院当研究生。他的老师布鲁克斯是一位形态学家,但很有哲学头脑,经常给学生们讲述生物各分支学科的关系,指出遗传学等学科中还有许多尚待研究的问题,对摩尔根的启示很大。摩尔根渐渐对形态学的比较和描述的研究方法感到不满,他更偏爱实验研究。1894年,摩尔根到意大利那不勒斯动物园工作了十多个月。这里汇集了各种学术流派,摩尔根学到了许多有益的东西。回国后,他开始用实验方法代替了过去的比较、描述方法。

1908年,摩尔根开始进行果蝇实验。不过,他并不是为了研究遗传因子,而是对荷兰生物学家德弗里斯提出了突变论感兴趣。德弗里斯证实了植物遗传性状的突变,但还没有研究动物遗传性状的突变。

果蝇是一种苍蝇是类的小昆虫,但比苍蝇小得多。你要是注意观察的话,会发现,夏天它们常常聚集在水果摊上觅食。人们发现,果蝇是进行遗传学研究的理想实验材料,它繁殖快,大约2周就可以生长一代,这样,人们在短时间内就可以观察到它许多世代的遗传情况,更重要的是果蝇只有4对染色体,便于观察研究。

摩尔根的“果蝇遗传实验室”设备很简单,几张旧桌子上摆着几千只培育果蝇的瓶子。有一次,摩尔根偶然发现,在一个培养瓶中出现了一只白眼雄性果蝇,而普通的果蝇都是红眼睛的。这引起了他的好奇心。

摩尔根让白眼雄蝇与红眼雌绳交配,结果生出来的全都是红眼睛的果蝇。他又让这些红眼果蝇相互交配,生出的后代中,又出现了白眼果蝇,而且红眼蝇与白眼蝇的比例总是3∶1,完全符合孟德尔的遗传定律。

事实使摩尔根不得不对孟德尔的学说刮目相看,他从一个对孟德尔学说持怀疑态度的人,变成了一个热衷于孟德尔学说的人。

在果蝇实验中,摩尔根还发现了一个令人奇怪的现象,那就是几乎所有的白眼果蝇都是雄性的,也即白眼的遗传特征总是伴随着雄性个体遗传,这究竟是什么原因呢?摩尔根抓住这一现象穷追不舍,终于用基因和染色体遗传学说成功地解释了伴性遗传现象。

原来,果蝇的4对染色体中,有一对是决定雌雄性别的性染色体,雌果蝇的两条性染色体形态一样,叫XX染色体,雄果蝇的两条性染色体形态不一样,一大一小,叫XY染色体。白眼基因就载在X染色体上,Y染色体上没有它的等位基因。当雌雄果蝇交配时,红眼基因与白眼基因组合在一起时,总是表现为红眼,因为红眼基因是显性基因。在子二代中,只有当载有白眼基因的X染色体与Y染色体结合时,由于Y染色体没有它的等位基因,才会表现出白眼来,而X和Y染色体结合,出来的都是雄果蝇。

摩尔根和他的学生发现,还有一些遗传性状也像这样总是在一起遗传,他们把这种现象叫做基因连锁。而基因连锁群的数目,恰恰与染色体的数目相同。如果蝇有4对染色体,它的基因连锁群正好有4个。这就表明,这些基因位于同一条染色体上,就像坐在同一辆车上的旅客总是一起旅行一样,几个基因位于同一染色体上时,它们决定的性状总是一起遗传,只有位于不同染色体上的基因才可以自由结合,这就是摩尔根发现的基因连锁定律。

摩尔根是一位具有民主作风的科学家。他招收了几个热情、有才华的大学生到他的实验室工作,果蝇室充满了民主的学术空气,从而使新思想、新成果不断出现。摩尔根的学生斯特蒂文特发现,基因连锁群并不是铁板一块,有时也会被打乱,这是因为精卵结合时,染色体可能会发生断裂和部分交换,两个基因在染色体上的距离越远,交换的频率也就越大。这就是遗传学的交换定律。根据遗传特性的相互关系和不同基因的交换率,可以推断出各种基因在染色体上的排列位置。据此,他们成功地绘出了果蝇的基因排列图。这也是世界上第一张基因在染色体上的排列图。

1915年,摩尔根和他的学生出版了《孟德尔遗传的原理》,1919年出版了《遗传的物质基础》,1926年出版了《基因论》。

由于摩尔根首次用实验揭示了基因与染色体的关系,建立了比较系统的染色体和基因理论,大大丰富和发展了孟德尔开创的现代遗传学,他于1933年获得诺贝尔生理学和医学奖。

基因之谜

摩尔根虽然证明了染色体是基因的载体,然而染色体究竟是由什么物质组成的?基因的化学构成是什么?基因何以能传递遗传信息?仍然是一个谜。

正像物理学家和化学家们假设了看不见的原子和电子一样,生物学家们也假设了看不见的基因。随着科学技术的发展,物理学家和化学家找到了原子、电子,生物学经过前赴后继的努力,也找到了基因的实体,那就是脱氧核糖核酸。

核酸是怎样发现的呢?

1869年,瑞士化学家米歇尔从脓细胞中分离出一种含有氮和磷的物质,这种物质的性质完全不同于蛋白质。由于细胞核主要是由这种物质组成的,因此,他称之为核素。后来,人们发现这种物质是一种强酸,就改称为核酸。

德国生化学家科塞尔第一个系统地研究了核酸的分子结构,发现了核酸中有四种不同的碱基,还有磷酸与戊糖。他的学生列文和琼斯又进一步发现,戊糖有脱氧核糖和核糖两种,两者在结构上仅差一个氧原子,据此,将核酸分为两大类:脱氧核糖核酸和核糖核酸,即DNA和RNA。

虽然人们发现细胞核主要是由核酸组成的,但是,当时人们都误认为核酸是由四种核苷酸组成的单调均匀的大分子,因此,许多生物学家不相信核酸会是千变万化的基因的载体,而把目光投向了细胞中的另一种物质——蛋白质。

蛋白质的发现比核酸还要早30年。由于蛋白质像鸡蛋清一样一加热就会凝固,因此人们给它起名为蛋白质。蛋白质是由氨基酸组成的。

20世纪以来,人们发现的蛋白质的种类越来越多,功能也越来越广泛,起免疫作用的球蛋白,具有形形色色的生理作用的激素等都是蛋白质。因此,许多科学家猜想它很可能是遗传信息的载体,以致核酸反而遭到冷落。

那么,人们是怎样发现DNA是遗传物质呢?是细菌的转化实验为人们提供了证据。

1928年,英国细菌学家格里菲斯用肺炎双球菌对小鼠做感染实验。肺炎双球菌有两种,一种是有毒型,可以使动物患肺炎死亡,它的细胞外边有外膜;另一种是无毒型,不会引起动物患病,它的细胞外边没有外膜。

格里菲斯把有毒的肺炎双球菌加热杀死后,注射到小鼠体内,小鼠不再患病。可是当他把加热杀死后的有毒菌和活的无毒菌混合后注射到小鼠体内时,这些小鼠全都患病死亡了,而且在小鼠体内发现了活的有毒菌。

实验的结果简直让人不可思议,有毒的肺炎双球菌是从哪里来的呢?难道他们会死而复生?格里菲斯提出,死去的有毒菌中有一种转化因子,它们可以使无毒菌转化为有毒菌。

美国洛克菲勒研究所的细菌学家艾弗里敏锐地意识到格里菲斯工作的重要性。他和他的两个同事立即着手捕捉神秘的转化因子。他们把有毒的肺炎双球菌加热杀死,从其中提出蛋白质片段,放入无毒菌的培养液中,结果不起任何作用;相反,当把其中的蛋白质、糖类都除去后,剩余的物质仍有转化作用,这个剩余物质经过纯化后证明,它们就是DNA。DNA不仅可以使无毒菌转化成有毒菌,而且转化生成的有毒菌还可以一代代复制下去。这就表明,DNA是遗传信息的携带者,基因就在DNA上。

同类推荐
  • 激发孩子灵感的发明发现故事

    激发孩子灵感的发明发现故事

    《激发孩子灵感的发明发现故事》内容简介:从幼年时期开始,孩子的认知能力开始形成,并逐渐形成自身的人生观和价值观。生命需要鼓舞,心灵需要滋润。《雷达的发明》、《甜甜圈的诞生》、《小游戏中的大发明》等收录在《激发孩子灵感的发明发现故事》中的故事极具启蒙意义,可以启迪孩子的心灵,开发孩子的潜能,塑造孩子健康的人格,为孩子健康茁壮成长创造必要的条件。愿孩子们拥有一次快乐的阅读之旅。
  • 海豚王子:克隆工厂

    海豚王子:克隆工厂

    BOBO和阿力古历经千难万险,来到了一个很像白海豚王国的国家,竟然还见到了自己的“爸爸妈妈”,却不知道这又是北极女巫的一个大阴谋。BOBO和阿力古凭借勇气和爱,打败鲸鱼怪,降服了章鱼博士,大战黑鲨鱼将军麻力轰,终于和妈妈重逢,将她营救了出来。
  • 机器大战的故事

    机器大战的故事

    科幻故事是西方近代文学的一种新体裁,诞生于19世纪,是欧洲工业文明崛起后特殊的文化现象之一。人类在19世纪,全面进入以科学发明和技术革命为主导的时代后,一切关注人类未来命运的文艺题材,都不可避免地要表现未来的科学技术。而这种表现,在工业革命之前是不可能的。
  • 悦读馆·大开眼界:世界地理之最

    悦读馆·大开眼界:世界地理之最

    本书从地理信息之最、人物之最、地貌之最、河流之最、湖泊之最、海洋之最、瀑布之最、岛屿之最、城市之最、国家之最、矿产资源之最、地方之最和灾难之最这几个领域出发,全方位展现了迷人的世界。
  • 自信的树立(优秀人才成长方案)

    自信的树立(优秀人才成长方案)

    此套书撷英采华,精心分类,不但为处于青少年时期的孩子创造了一个欢乐、轻松的成长环境,而且更陶冶了青少年的情操,可以说是一套让青少年全面提高、全面发展的青春励志经典读物。
热门推荐
  • 神奇宝贝之传奇再现

    神奇宝贝之传奇再现

    不一样的大陆,不一样的神奇宝贝。穿越过来的小星,经历千幸万苦终于找到杀父真凶。可惜自己毫无能力......
  • 挽卿辞

    挽卿辞

    她,孤身坠入尘世,如一粒浮尘,或沉浮入海,或卷入红尘,历经所有伤痛只为兑现一个诺言……他,阳光下,暗夜里,就像一个不易发觉的影子,徘徊在她所有出现的地方,为每一次不得照面的相遇而欣喜……
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 神女降临之兽王养妻记

    神女降临之兽王养妻记

    米菲,本该是出国演出的她,因飞机坠毁而穿越到荒野大陆,恍然回神的她,发现自己穿越到了兽人世界,弱鸡的她三番五次差点一命呜呼,为了活命,她决定听话,去找那个神一般的兽人抱大腿,殊不知,从此有苦难言……
  • 时光知江暖

    时光知江暖

    江自暖一直是娱乐圈边沿的存在,没想到遇上沈知砚之后,她一步步的走向更耀眼的位置,这实非她所愿......
  • 晚晴

    晚晴

    [花雨授权]偏偏在他放弃了之后,情丝却将他密密围绕——春风再好、桃花再美,比不上她生气时候的俏模样。但上天总是存心捉弄,她的执拗使他一筹莫展,她要怎样才能明白他的好呢?
  • 冷王的绝世王妃

    冷王的绝世王妃

    他,立于凡尘却风华绝代,她,一场背叛闯入了他的世界,看他们如何携手闯荡江湖,一生一世一双人。竹影风窗数阵斜,人愁坐思无天涯。夜来留得情丝梦,全为乾声似荻花。弹指流年,歌尘散,消瘦了思念。轻触琴弦,如风之纤细,思念为谁断?绕指的情愫,一生的眷恋,在琴弦和鸣中。情缘诉不尽笙箫,一世寂寞谁人怜。
  • 西游之万里征途

    西游之万里征途

    已经修改,请关注新书:魔改狂人已经修改,请关注新书:魔改狂人已经修改,请关注新书:魔改狂人
  • 诸天穿越从超神开始

    诸天穿越从超神开始

    无限流小说,前期主世界《超神学院》后面会越来越多