登陆注册
28665800000020

第20章 基因会变吗(2)

根据DNA指纹破案虽然准确率高,但也有出错的可能,因为两个人的DNA指纹在测试的区域内有完全吻合的可能。因此在2000年英国将DNA指纹测试扩展到10个区域,使偶然吻合的危险几率降到十亿分之一。即使这样,出错的可能性仍未排除。

基因疗法

基因疗法是通过基因水平的操作来治疗疾病的方法。基因是“生命的设计图”,当基因因为突变、缺失、转移或是不正常的扩增而“出错”时,细胞制造出来的蛋白质数量或是形态就会出现问题,人体也就生病了。所以要治疗这种疾病最根本的方法,就是找出基因发生“错误”的地方和原因,把它矫正回来,疾病自然就会痊愈了。

目前的基因疗法是先从患者身上取出一些细胞,然后利用对人体无害的逆转录病毒当载体,把正常的基因嫁接到病毒上,再用这些病毒去感染取出的人体细胞,让它们把正常基因插进细胞的染色体中,使人体细胞就可以“获得”正常的基因,以取代原有的异常基因;接着把这些修复好的细胞培养、繁殖到一定的数量后,送回患者体内,这些细胞就会发挥“医生”的功能,把疾病治好了。

美国医学家安德森等人对腺甘脱氨酶缺乏症的基因治疗,是世界上第一个基因治疗成功的范例。

1990年9月14日,安德森对一例患ADA缺乏症的4岁女孩进行基因治疗。这个4岁女孩由于遗传基因有缺陷,自身不能生产ADA,先天性免疫功能不全,只能生活在无菌的隔离帐里。他们将含有这个女孩自己的白血球的溶液输入她左臂的一条静脉血管中,这种白血球都已经改造过,有缺陷的基因已经被健康的基因所替代。在以后的10个月内她又接受了7次这样的治疗,同时也接受酶治疗。1991年1月,另一名患同样病的女孩也接受了同样的治疗。两患儿经治疗后,免疫功能日趋健全,能够走出隔离帐,过上了正常人的生活,并进入普通小学上学。

继安德森之后,法国巴黎奈克儿童医院的费舍尔博士与卡波博士也对两例先天性免疫功能不全的患儿成功地进行了基因治疗。

尽管目前只有极少数的基因疗法开始在临床试用,大多数还处于研究阶段,但它的潜力极大、发展前景广阔。

基因工程药物

生物工程技术的诞生与应用不仅改变了我们的生活而且还让我们的生活多姿多彩。

1977年,美国加利福尼大学的遗传学家博耶等人,用基因重组技术,在大肠杆菌中制造出5毫克的人生长激素抑制因子。如果用传统的办法从羊脑中提取5毫克生长激素抑制因子,那就要有50万个羊脑。这是基因工程应用的一大胜利。

糖尿病是患者胰腺不能正常分泌胰岛素,引起血糖过高而至,其死亡率仅次于癌症和心脏病。全世界的糖尿病患者已达数千万人。20世纪初,医生们就采用胰岛素治疗糖尿病。但胰岛素以往主要靠从牛、猪等大牲畜的胰脏中提取,一头牛的胰脏或一头猪的胰脏只能产生30毫升的胰岛素,而一个病人每天则需要4毫升的胰岛素,胰岛素产量远远不能满足需要。

1978年,美国化学家吉尔伯特领导的研究小组,利用重组DNA技术成功地使大肠杆菌生产出胰岛素。

为基因重组技术商业化而建立的第一家公司是南旧金山的一家名叫杰纳泰克的公司。该公司是由博耶和企业家R斯旺森创办的,该公司能够大量生产人体胰岛素。1982年,用基因技术生产的胰岛素产品获得批准并投入使用。

干扰素是两位美国科学家在1957研究病毒的干扰现象时发现的一种抗病毒的特效药,能战胜病毒引起的感染,如水痘、肝炎和狂犬病等。干扰素本是我们身体内部少数几种能抵御病毒的天然防御物质之一,是在病毒入侵细胞以后从仍然健康的细胞中自然产生的。但人体内产生的干扰素数量非常小,所以当时生产的干扰素数量很少而十分昂贵。

1980年,由美国生物化学家博耶和科恩创建的基因工程公司,通过各种不同基因组合得到几种生产干扰素的细菌。1981年,又用酵母菌生产干扰素获得成功。过去,用白细胞生产干扰素,每个细胞最多只能产生100~1000个干扰素分子;而用基因工程技术改造的大肠杆菌发酵生产,在1~2天内,每个菌体能产生20万个干扰素分子。现在,美国已经采用基因工程来大规模工业化生产干扰素。

中国在1982年已用基因工程方法组建了生产干扰素的大肠杆菌新菌种,它产生的干扰素跟天然干扰素一样具有抗病毒活性。同年,复旦大学遗传研究所获得人干扰素基因克隆的酵母菌株。1983年建立了人甲种干扰素基因工程无性繁殖系,并用于生产。

结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。

1912年英国布喇格父子建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生阿斯特伯里和贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。

20世纪50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先在蛋白质结构分析方面,1951年提出了α螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年桑格完成了胰岛素的氨基酸序列的测定。接着肯德鲁和佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术,分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。

另一方面,德尔布吕克小组从1936年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。

1940年比德尔和塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。

1953年沃森和克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。并在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。

遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年雅各布和莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之开始解开了。

仅仅三十年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。

蛋白质的结构单位是α氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。

蛋白质分子结构的组织形式可分为四个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。

蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。

随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。

发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。

生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由DNA构成。简单的病毒如噬菌体的基因组是由46000个核苷酸按一定顺序组成的一条双股DNA。由于是双股DNA,所以通常以碱基对计算其长度。

遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代DNA为模板合成子代DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸。

基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出于代DNA链。转录是在RNA聚合酶的催化下完成的。

生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。

生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。

生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20%~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟,将会对人类更有效地利用能量作出贡献。

生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。

对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。

分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。

物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。

过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。

采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲属关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。

分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肚激素和疫苗等,基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。

从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。

同类推荐
  • 探究式科普丛书-生物界种类最多的家族:节肢动物

    探究式科普丛书-生物界种类最多的家族:节肢动物

    本书从各个角度对种类繁多的节肢动物进行了详细的介绍,且配有相关插图,可以为读者提供一个广阔的知识平台,让广大青少年朋友们更全面地了解这种地球上种类最多的动物。
  • 探索神秘的大自然:有趣的物质循环

    探索神秘的大自然:有趣的物质循环

    自然环境可分为四个圈层:生物圈、大气圈、水圈和岩石圈,总称生态圈,这是经过漫长的演化而形成的。自然界是强大而复杂的,它所包括的所有物质并不单独的存在,而是有着千丝万缕割舍不断的联系。人类就是在这些物质的相互联系和相互作用下生存着。自然界并不是恒定不变的,而是处在一种不断的运动变化中,这个运动变化就是循环。我们可以这样理解,在自然界中,存在着一个大的循环,而这个大循环要经历极其漫长的岁月。这是物质运动的一个永恒的循环,这个循环只有在我们的地球年代不足以作为量度单位的时问内才能完成它的轨道。
  • 探究式科普丛书-心心相应的磁

    探究式科普丛书-心心相应的磁

    本书属于探究式科普丛书之物质科学。它采用读者比较容易理解、接受和参与的方式,普及自然科学和社会科学知识,传播科学思想,弘扬科学精神,倡导科学方法,推动科学技术的应用。
  • 低碳有你:有你,有我,地球更精彩

    低碳有你:有你,有我,地球更精彩

    《低碳有你——有你有我地球更精彩》旨在引导新时代的青少年一起行动起来,为了我们共同的家园,用自己的实际行动把生活耗用能量降到最低,从而减少二氧化碳的排放,实现绿色低碳生活。低碳生活是一种态度,也是一种责任,更是一种爱,让我们的爱更宽广,更包容,更细致吧。
  • 探秘——世界未解之谜(地球篇)

    探秘——世界未解之谜(地球篇)

    地球是我们人类赖以生存的家园,是创造和养育了众多生命的伟大母亲。然而,作为高等灵长类生物,人类在地球上生存的时间并不长。虽然,人类至今已经在科技领域取得了一系列重大突破,但是我们仍然无法解释许许多多地球上的谜团。
热门推荐
  • 带着爷爷打鬼子

    带着爷爷打鬼子

    一位每年要在横店死上千次的群众演员,而他的爷爷却是真正上过战场杀过鬼子的抗日英雄!一次剧组意外爆炸导致他穿越时光回到战火纷飞的抗日时代!年轻的爷爷,凶狠的鬼子,真实的战争开始上演.......
  • 贪恋红尘三千尺

    贪恋红尘三千尺

    本是青灯不归客,却因浊酒恋红尘。人有生老三千疾,唯有相思不可医。佛曰:缘来缘去,皆是天意;缘深缘浅,皆是宿命。她本是出家女,一心只想着远离凡尘逍遥自在。不曾想有朝一日唯一的一次下山随手救下一人竟是改变自己的一生。而她与他的相识,不过是为了印证,相识只是孽缘一场。
  • 邪帝倾心:惑妃从天降

    邪帝倾心:惑妃从天降

    她神奇地出现破坏了他的好事。他被她的美艳所惊,放下怀中的美妃,与她邂逅。她融化了他内心的坚冰,激发出他似火的激情。不料,他的热情被误解。二人陷入纠结。但他矢志不渝,坚守内心的爱。一句:“从今天起,你便是朕的人!”打动了她。他们解除了种种的误会,相互接纳对方。在层层的阴谋下,他们历经种种磨难。但他们始终坚守。最终,他们突破重围,修成正果!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 神级美食家系统

    神级美食家系统

    人这辈子,最难过的事情,就是每天早上都有一大群人用钞票催着你起床。”王林的眼中满是心酸,看着店门口人山人海,叹了口气:“自从我有了这美食系统,每天数钱都要一个小时,太可怜了。”从象牙塔走出的王林原本以为自己会是下一个金融圈的传奇,可没想到,自己竟然会因为一个莫名其妙的系统,踏上了美食界的巅峰。“好吧,其实我一开始,是打算研究如何用电脑控制挖掘机炒菜的。”
  • 存在于虚无之间

    存在于虚无之间

    他与来自平行空间的自己不断接触,误入修炼者的世界,与同伴在逃亡中求生存,各种奇遇与经历,让他逐渐接触存在的真像,也许我就是天、我就是地、我就是世间万物,也许一切都是幻象,皆是虚妄。
  • 元素之子之天命之路

    元素之子之天命之路

    千年前,天降血雨,封印的恶魔也即将出世。大陆即将面临灭世的灾难,正在这时十道耀眼的光芒闪耀天地,天命之人与恶魔大战十天十夜,最终天命之人们用自己的一切重铸封印……
  • 坏蛋不许跑

    坏蛋不许跑

    别人拥有系统都是称王称帝,而我却要去捉坏蛋?穷凶极恶,命悬一线,这事我可不干,什么?不敢就去见阎王爷?算了,还是小命要紧.......
  • 非宠不可:腹黑总裁约不约

    非宠不可:腹黑总裁约不约

    夏城所有人都知道,顾朝夕无法无天的宠着一个女人,宠到人神共愤的地步。只有她明白,他决定放纵她,乐于养虎为患,就是要看看她的本事,能把他逼到哪一步。“我等着看你搞垮我的公司,等着你毁了我。”男人张狂霸道的攻城略地,她心里有别人又怎样,不仅要在她身上烙上自己的印记,还要她痛的永生都不能忘记他。她寸寸退让,他步步紧逼,直到她躺在手术台,他却挽着另一个女人进了教堂。四年后再聚头,她已经是两个孩子的妈。望着男人错愕的表情,她满意的拍了拍肚子:“这里,还有一个。”【情节虚构,请勿模仿】