登陆注册
10478100000025

第25章 光与热(8)

人们把善于传导热的物体叫做热的良导体,把不善于传导热的物体叫做热的不良导体。我们平时用来做饭、烧菜的锅都是用热的良导体制成的,烧得快。冬季穿的棉衣、毛衣、羽绒服和皮衣等,都是用热的不良导体制成的,可以保存身体发出的热量,达到保暖的目的。

对流是液体或气体被加热后热传递的又一种方式。

我们都有这样的经验,用太阳能热水器洗澡,必须注意调节冷、热水两个阀门,调到一定程度,水温就适中了,洗起来十分舒服。为什么冷、热两个水管的水,从喷头出来后不冷不烫呢?原来有一个对流的过程,热量在管内自由传递,最终达到均衡。

如果有条件的话,可以做一个简单的实验来验证这个道理。

在盛水的烧杯或试管里,放入一些纤维粉末,然后把烧杯或试管放在酒精灯上加热。过一会儿,可以看到有一些粉末向上飘起,另一些粉末却向下沉降,上升的粉末和下降的粉末相对运动着。加热的时间越长,粉末的这种上下相对运动越快。水烧开后,这种运动更加剧烈。

纤维粉末本身在水中是不会运动的,实验的显示告诉我们,水被加热的时候会发生相对运动,水带动粉末上下翻腾。

因为在加热的过程中,烧杯或试管下部的水首先受热,体积膨胀变轻,向上浮起;而上部的水没有受热,比下部受热的水重,就向下沉降。这样不断地上下运动,全部水就逐渐地热起来,直到沸腾。

空气是热的不良导体,它的热传递方式也是对流。

例如,当你分别用手在火炉上方和炉门处试一试,就会感到,炉口有一肌热气往上冒,而炉门处却有一股冷气吹入。这是因为炉膛内和炉口附近的空气,受热膨胀上升,周围的冷空气就从炉门进入炉子来补充。

人们掌握了这个原理,冬季把会把炉子放在屋里,利用暖气片、电热油灯、取暖器等取暖设备,使屋内的空气不断对流,最终使整个房子变热。

还有利用空气不善传导热的特点来保温、保暖的。如保温瓶胆、保温杯,就是把两层玻璃或玻璃与外壳之间空气抽掉,使空气对流性能减弱,增强保温性能。火车上的双层玻璃窗,冬天放下来,车厢里的热不容易散出去,就暖和了。

我们在房间里放一个电取暖器,身体向着火的一面就感觉到热,时间长了甚至觉得灼热。为什么只有向火的一面才感到热呢?原来是由于热辐射。

所谓热辐射,就是热量从热源沿直线直接向四周发射出去。太阳和地球之间的热传递方式就是靠辐射进行的。

热辐射有什么特点呢?它是以热源为中心向四周发出的。在跟热源距离相等的圆周位置上,辐射的强度相同,辐射的强度跟离开热源的距离有关。也就是说,离热源越远,辐射越弱;离热源越近,辐射越强。太阳光辐射散热,空气对流导热,人在与雪地接触的过程中会进行热传导,三种热传递方式时刻都在进行着热辐射是直线前进的,一般穿不过不透明的障碍物。

同时,热的辐射还与颜色的深浅相关。颜色越深,吸收或散发辐射热的能力越强;颜色越浅,吸收或散发辐射热的本领越弱。正因为如此,人们夏季喜欢穿浅色衣服,冬季喜欢穿深色衣服。

冬天池塘里的水下面比上面热

给洗澡水加热。温度一上升,水就开始膨胀、变轻,热水渐渐向上面集中。洗澡前,要好好搅动一下澡盆里的水,因为上面的水热,下面的水凉。

但是,在冬天的池塘里,情况就大不相同了。我们这样说,是因为水有一种罕见的特性,即当水温在4℃的时候,其重量比任何温度的水都要重。由于水有这种特性,所以,当池塘的水面温度因寒冷下降到4℃的时候,这层水就向下沉去。又因为4℃以下的水虽然更凉,但重量却比4℃的水轻,所以,这些水向上升,于是池塘的水面逐渐结上了一层冰。

然而,冰的传热功能欠佳,这样就使得池塘底部的水温不降到4℃以下。由于上述各种原因,除去特别浅的水池外,池塘里的水不会全部都结成冰。

对着镜面哈气

对着镜面哈气,镜面所以会模糊,是因为哈气中的水蒸气凝结成小水珠,附着在镜面上的缘故。冬天的早晨,我们呼出的气会变成白色气流也是同一原因。

镜面被哈过气后,其温度也会有少许上升。此时如将镜面擦干,再次对着它哈气,镜面也不会像第一次那么模糊了。也就是说,镜面温度一旦上升,哈气中的水蒸气所凝结的小水珠就大大减少了。我们夏天呼出的气与冬天呼出的气所以不同,也是这一道理。

另外,在擦镜子时,无论是用手还是用布去擦,都会由于摩擦而使镜面的温度上升。

电冰箱制冷原理

一般的电冰箱都使用氟利昂等液态冷却剂。这种气体循环时,一经电冰箱压缩机压缩,很容易变成液体。如果把这种液体马上放到低压处,它又立即还原成气体而膨胀起来,这时,它便从周围吸走大量的热量。这就是电冰箱的制冷。接下去,气体再由压缩机压缩成液体,如此循环往复,电冰箱就能不断地制冷了。

气体冷藏柜中没有这种压缩机,它是让容易吸收气体的液体和制冷用的气体一起循环,液体吸收气体而变热后,溶解在液体中的气体又分离出来,再把这种气体立即排进膨胀室,它就会吸收周围的热量。

完成任务后的气体再被冷却的吸收液吸收,如此往复下去,冷藏柜就能不断制冷了。气体冷藏柜就是利用气体的温度受热、反过来制冷的原理制成的。

水和油的冻结有何不同

大多数物质都是热胀冷缩。油也是这样,温度越低,体积越小,密度就越大,因而相对密度也就增大。因此,冷的油就往下沉,并逐渐冻结,所以油是先从下面冻起的。

水却不同。水在4℃时体积最小,相对密度最大。可是当水温降到0℃以下时,体积反而会膨胀,密度和相对密度都会变小,自然要向上浮。这样,上面的水就会先结冰。

热水会使玻璃杯炸裂

玻璃杯炸裂的原因是因为膨胀。杯里一倒入热水,杯子内壁就受热急剧膨胀,但杯外壁却还是保持原样,内层玻璃突然向外大力挤压,杯子就破裂了。

如果事先让杯子内外侧同时受热,然后再倒入热水,杯子内外膨胀的程度相差不那么大,就不会炸裂了。

不过,如果玻璃杯很薄,即使倒入热水,热也会很快传到外侧,这样内外同时膨胀,杯子也就不易破裂。另外,所谓的硬质玻璃和耐热玻璃,是因为膨胀的比例小才不易炸裂。

最节省煤气的方法

妈妈让丢丢用脸盆温点儿水洗脸,可是丢丢偷懒,只用暖水瓶里的水对上凉水就洗脸了。妈妈很不高兴,说这样费煤气。你说丢丢的妈妈说得有道理吗?

我们用一个实例来计算一下:

假如丢丢最后配好的水是5千克、50℃,他用的暖瓶中100℃的开水为m千克,用20℃的凉水必然是(5-m)千克。由Q吸=Q放有:

c×m×(100-50)=c×(5-m)×(50-20)

得:m=1.875千克

要把1875千克的水从凉水情况(20℃)加热到100℃的开水,所需的热量为:

Q=c×m×(t2-t1)

Q=4.18×1.875×(100-50)

∴Q=627焦耳

对于第二种情况,即直接使20℃的5千克的凉水升高到50℃,所需热量为:

Q′=4.18×5×(50-20)=627焦耳

由此说明,这两种情况所需的热量是一样的。也就是说,如果没有热量损失的话,要制备一定温度、一定质量的温水,不管哪一种办法,所需供给的热量是相等的,这符合能量守恒定律。

但是从实际生活出发,情况就有些不同。一般把水煮沸,往往并不是刚刚加温到100℃,而且存在物态的变化,因此实际上还要多供给一部分汽化热。等100℃的开水灌进暖瓶里以后,由于暖瓶的保温多少都有些损失,实际用的时候温度到不了100℃,而只有80℃左右。由于这两个原因,所以采用两种不同温度的水相混的办法,需要的热水会超过1875千克,这就表明必须多费煤气提供更多的热量才行。看来,丢丢的妈妈还是有实践经验的。

在冰里加盐会使温度降低

冰和盐,在融化时,都会从周围吸取热量,也就是说,正是它们的这种吸热作用才使温度下降的。

为了使冰融化,就必须要有热量,而冰在融化时,又不断地吸取周围的热量。因此,在冰的旁边,人们会感到凉意。

还有,此时如把食盐加入由冰融解而来的水中,会使温度降得更低,因为盐在融化时也要吸收周围的热。

除盐之外,还有许多物质具有这样的吸热性质,如海波(用于洗相片的药品),其吸热作用特别强。当然,各种物质的吸热作用是不同的。

如果把冰和盐按3∶1的比例混和在一起,就成为所说的冷冻剂,它可以使温度降至-213℃。

铁环受热后向外侧膨胀

确实,铁环受热之后会向外膨胀,而不会向空心的内侧膨胀。在这里先不考虑铁环,而看一看实心的铁吧。

实心的铁受热后当然会膨胀。这时相当于铁环空心部分的铁会怎样呢?

即使是空心的铁环,如果只考虑其空心的外侧,那么它也会与实心铁一样,应该是向外侧膨胀。

还有,如果把铁环和与铁环空心一样大小的铁一起加热,那么它们的膨胀率是一样的。

人们已巧妙地利用了这一特征,如安装电车车轮时,首先加热外轮,使其空径扩大,然后再把轮套在内车轮上迅速冷却,最后安上坚固的钢圈。

火柴也能在黑板上划燃

当火柴头与火柴盒上的摩擦面相摩擦时,由于双方都很粗涩,会产生出很多摩擦热。这时摩擦面上所含的磷首先被点燃,所产生的热量又会使火柴头上的硫和氢氧化钾分解发出氧,从而点燃火柴棍。

就是说,第一次点火是由火柴盒摩擦面上的红磷引起的,第二次点火是由火柴头产生的氧与燃料(硫)的作用而发生的。

当然,即使不用火柴盒上的摩擦面,而用火柴头在黑板或放在桌面的报纸上猛烈摩擦,当产生大量的摩擦热时,也可以直接引起第二次点火,从而点燃火柴。

这是摩擦产生的高温使氢氧化钾分解出氧,同时使硫的温度达到燃点以上,从而使火柴燃烧起来。也就是说,物体燃烧的三个条件都齐备了,火柴也就点着了。这三个条件是氧、燃点(高温)和燃料。

但是不用火柴盒划火柴时,要有些技术上的窍门。

同类推荐
  • 宇宙真相

    宇宙真相

    《宇宙真相》讲述浩瀚无边的宇宙,诡异莫测的自然,神奇有趣的生物……千余个知识热点,千余幅精美图片,带领我们一起探索变化无穷的大千世界。
  • 惊人大发现(科学知识大课堂)

    惊人大发现(科学知识大课堂)

    为了普及科学知识,探索科学发展的历程,领略科学丰富多彩的趣味,弘扬科学名家的丰功伟绩,学习科学家不懈的创新精神与无私的奉献精神,培养青少年科学、爱科学的浓厚兴趣,并密切结合青少年朋友日常的生活与学习特点,我们组织编写了这套《科学知识大课堂》。作为一套普及科学知识的通俗读物,本书有别于专业的学术论著,侧重于知识性、趣味性、实用性,注重对青少年科技素质的培育、科学兴趣的培养、科学精神的塑造与科学方法的启迪,不求面面俱到,但求言之有物,物有所指,指有所发。
  • 百科由来

    百科由来

    本书涵盖了生活,历史,社会等各个方面的百科知识,详细讲述了关于若干领域百科的由来。
  • 世界科技百科:宇宙时空

    世界科技百科:宇宙时空

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。
  • 开阔眼界的地理故事

    开阔眼界的地理故事

    《开阔眼界的地理故事》丝绸之路的格局.尽管变化万端,但在塔克拉玛干南北的天山南麓的两道却变化不大,尽管如此,却至今无人能准确地说出它们的途径。现代地图无一例外标注的都是”示意图”,给人们留下了一个难解之谜。
热门推荐
  • 既温柔,又狂野

    既温柔,又狂野

    本书收录了北京女作家赵凝近年的散文随笔作品。其特有的文笔风格,完整地展现出了生活在繁华都市中的一个知识女人的真实心迹。
  • 电竞教练是恶魔

    电竞教练是恶魔

    新文《一不小心成为全服公敌》已发,首发平台QQ阅读【斯文败类女扮男装女主】×【温润如玉明月清风男主】黑白战队签下的新教练竟然是三年前的少年天才星火?一个本该消失在赛场上的人,却重新出现在了人们的视野中,随着众人的震惊,ace解散的真相被逐渐揭晓。柯月:“我当然相信司法是公正的,可是,人不是。”「哪有什么成长,都是些大人的阴谋罢了。」林沉:“柯月,我喜欢你。不是小孩子对糖果的那种喜欢,也不是朋友之间的那种喜欢。”“而是安徒生童话里,王子与公主的那种喜欢,是电视剧里演着的那种喜欢。”“是我想要拥抱你,亲吻你,甚至是想要占有你的那种喜欢。”「你们是这场谋杀中的幸存者,而我,是那个活下来的疯子。」——柯月好了,亲爱的,你的绝望来了。——你不会得逞的。——哦?我拭目以待。女主伪君子,阴暗抑郁;男主世家出来的谦谦公子,马甲众多。cp可随意站主线电竞,中间会牵扯很多利益纠纷,结局he
  • 言行龟鉴

    言行龟鉴

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 零度蓝焰

    零度蓝焰

    他是等待千年的青狐,他是冷酷无情的君王。当魅惑世人的妖遇上真龙天子的他,当小白因爱转为妖娆邪魅,当爱情在万丈红尘中零落的不复当初模样,他依然会说“青华,我这辈子从不后悔爱上你,我只恨,为什么没有早些遇到你?”青华伸手,轻轻抚过他耳边的鬓发,凑到君墨然耳边,无限娇媚的吐出一句:“君墨然,青华今日才知道,原来我等待千年,只为你一人。”
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 金牌太子妃

    金牌太子妃

    她是X国最优秀最冷血的特工。一朝穿越,竟附身在翼北王府最不受宠的三小姐身上,传闻这个三小姐色胆包天,花痴无脑,为了和一群女人争夺美男而被活活鞭死。笑话,追美男?这种货色她还看不上!鞭她打她?行!五倍十倍还之!之后更发现,毒打她的竟然还有她那自恋的未婚夫!行,敢负我,我让你尝尝永世不举的滋味。当不受待见的废物小姐惊艳重生之后,整个天下都将为之倾倒,看她如何展露锋芒,找到真情之人。
  • 惊天洞地

    惊天洞地

    元始天尊是隐藏在世界背后的黑手?人类灵魂最终的归处是那里?世界上有外星人吗?在和平的普通人世界外是否存在着一个超人的世界?一切的答案尽在……
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 你就是我的小白花

    你就是我的小白花

    凉氏家族内,为什么逃跑家主站在古老的大宅内如是说道少年站在阴影处卑微的蜷缩在那....
  • 风起萧落

    风起萧落

    荒天界内有百国林立,中洲之上,一座天宫统悬浮万载岁月,号令百国,主宰一界。直到一双姐弟从天而落,生而识知的萧家长子出生,令这一切发生了改变。追溯那被掩盖的秘密,曾经历史的逐渐揭露,当灾难再临时,又能否成功度过?(第一次写书还请多指教,注:本书双主角设定。。)