登陆注册
10478100000002

第2章 物理学概述及发展(1)

“物理”一词寻根

中文“物理”一词,最早出现于战国时期。战国时有一楚人隐居深山以鶡羽为冠,自号鶡冠子,著有《鶡冠子》,《汉书·艺文志》录有其文。内云:“庞子云:‘愿闻其人情物理’。”西汉淮南王刘安等著《淮南子》亦见“物理”一词:“耳目之察,不足以分物理。”这里出现的“物理”一词是泛指一切事物的常理,而非近代意义的物理学。

明清之际的著名学者方以智(1611—1671年)曾著《物理小识》一书,这时的“物理”一词,实际上包括了自然科学的各门学科,甚至还包括人文科学的某些分支。

晚清,物理学包括在所谓“格物学”之中。“格物”二字是我国古代哲学术语“格物致知”的简称。当时的格物学是指除了数学、天文学、医学和农学以外的所有自然科学。

明末清初,西方物理学知识开始传到中国。最初曾按西文Physics把物理学音译为“费西伽”。1900年,日本人藤田平八把饭盛挺造编著的《物理学》译成中文,我国学者王季烈对该书进行了文字润色和重编,并由江南制造局刊行。这是我国第一本具有现代物理学内容和系统被称为物理学的书。

现在“物理”一词含义有二,一是泛指事物的道理,二是“物理学”的简称。

物理学概览

物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这一目标还很遥远。

弯曲的时空——广义相对论

狭义相对论给牛顿万有引力定律带来了新问题。牛顿提出的万有引力被认为是一种超距作用,它的传递不需要时间,产生和到达是同时的。这同狭义相对论提出的光速是传播速度的极限相矛盾。因此,必须对牛顿的万有引力定律也要加以改造。

实验证明,惯性质量和引力质量相等,因此不论行星的质量多大多小,只要在某一时刻它们的空间坐标和速度都相同,那么它们的运行轨道都将永远相同。这个结论启发了爱因斯坦设想:万有引力效应是空间、时间弯曲的一种表现,从而提出了广义相对论。

根据广义相对论,空间、时间的弯曲结构决定于物质的能量密度、动量密度在空间、时间中的分布;而空间、时间的弯曲结构又反过来决定物体的运行轨道。在引力不强,空间、时间弯曲度很小的情况下,广义相对论的结论同牛顿万有引力定律和牛顿运动定律的结论趋于一致;当引力较强,空间、时间弯曲较大的情况下,就有区别。不过这种区别常常很小,难以在实验中观察到。从广义相对论提出到现在,就只有四种实验能检验出这种区别。

广义相对论不仅对于天体的结构和演化的研究有重要意义,对于研究宇宙的结构和演化也有重要意义。

时空新观念——狭义相对论

在经典力学取得很大成功以后,人们习惯于将一切现象都归结为由机械运动所引起的。在电磁场概念提出以后,人们假设存在一种名叫“以太”的媒质,它弥漫于整个宇宙,渗透到所有的物体中,绝对静止不动,没有质量,对物体的运动不产生任何阻力,也不受万有引力的影响。可以将以太作为一个绝对静止的参照系,因此相对于“以太”作匀速运动的参照系都是惯性参照系。

爱因斯坦对空间、时间的概念进行了深刻的分析,提出了狭义相对论,从而建立了新的时空观念。

狭义相对论的基本假设是:(1)在一切惯性参照系中,基本物理规律都一样,都可用同一组数学方程来表达;(2)对于任何一个光源发出来的光,在一切惯性参照系中测量其传播速率,结果都相等。

在狭义相对论中,空间和时间是彼此密切联系的统一体,空间距离是相对的,时间也是相对的。因此尺的长短,时间的长短都是相对的。但在广义相对论中,并不是一切都是相对的。

相对论力学的另一个重要结论是:质量和能量是可以相互转化的。假使质量是物质的量的一种度量,能量是运动的量的一种度量,则上面的结论是:物质和运动之间存在着不可分割的联系,不存在没有运动的物质,也不存在没有物质的运动,两者可以相互转化。这一规律已在核能的研究和实践中得到了证实。

当物体的速度远小于光速时,相对论力学定律就趋近于经典力学定律。因此在低速运动时,经典力学定律仍然是很好的相对真理,非常适合用来解决工程技术中的力学问题。

狭义相对论对空间和时间的概念进行了革命性的变革,并且否定了“以太”的概念,肯定了电磁场是一种独立的、物质存在的特殊形式。由于空间和时间是物质存在的普遍形式,因此狭义相对论对于物理学产生了广泛而又深远的影响。

原子物理学

现代原子物理学的基本理论主要是由德布罗意、海森伯、薛定谔、狄里克莱等所创建的量子力学和量子电动力学。它们与经典力学和经典电动力学的主要区别是:物理量所能取的数值是不连续的;它们所反映的规律不是确定性的规律,而是统计规律。

应用量子力学和量子电动力学研究原子结构、原子光谱、原子发射、吸收、散射光的过程,以及电子、光子和电磁场的相互作用和相互转化过程非常成功,理论结果同最精密的实验结果相符合。

微观客体的一个基本性质是波粒二象性。粒子和波是人在宏观世界的实践中形成的概念,它们各自描述了迥然不同的客体。但从宏观世界实践中形成的概念未必恰巧适合于描述微观世界的现象。

现在看来,需要粒子和波动两种概念互相补充,才能全面地反映微观客体在各种不同的条件下所表现的性质。这一基本特点的另一种表现方式是海森伯的测不准原理:不可能同时测准一个粒子的位置和动量,位置测得愈准,动量必然测得愈不准;动量测得愈准,位置必须测得愈不准。

量子力学和量子电动力学产生于原子物理学的研究,但是它们起作用的范围远远超出了原子物理学。量子力学是所有微观、低速现象所遵循的规律,因此不仅应用于原子物理学,也应用于分子物理学、原子核物理学以及宏观物体的微观结构的研究。量子电动力学则是所有微观电磁现象所必须遵循的规律。直到现在,还没有发现量子电动力学的局限性。

热力学的发展

物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的。因此热力学第一定律就是能量守恒与转换定律的一种表现。

克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会随着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。

光学和电磁波

光学,研究光的性质及其和物质间的各种相互作用的学科。光是电磁波,虽然可见光的波长范围在电磁波中只占很窄的一个波段,但是早在人们认识到光是电磁波以前,人们就对光进行了研究。

17世纪的科学家们对光的本质提出了两种假说:一种假说认为光是由许多微粒组成的;另一种假说认为光是一种波动。19世纪在实验中确定了光也有类似于波的干涉现象,以后的实验证明光是电磁波。20世纪初又发现光具有粒子性,人们在深入研究微观世界后,才认识到光具有波粒二象性。

光可以为物质所发射、吸收、反射、折射和衍射。当所研究的物体或空间的大小远大于光波的波长时,光可以当作沿直线进行的光线来处理;但当研究深入到现象细节,其空间范围和光波波长差不多大小的时候,就必须要考虑光的波动性。而研究光和微观粒子的相互作用时,还要考虑光的粒子性。

光学方法是研究大至天体、小至微生物及分子、原子结构非常有效的方法。利用光的干涉效应可以进行非常精密的测量。物质所放出来的光携带着关于物质内部结构的重要信息。

量子统计力学

以量子力学为基础的统计力学,称为量子统计力学。经典统计力学以经典力学为基础,因而经典统计力学也具有局限性。例如,随着温度趋于绝对零度,固体的热也趋于零的实验现象,就无法用经典统计力学来解释。

在宏观世界中,看起来相同的物体总是可以区别的,在微观世界中,同一类粒子却无法区分。例如,所有的电子的一切性质都完全一样。在宏观物理现象中,将两个宏观物体交换,就得到一个和原来状态不同的状态,进行统计时必须将交换前和交换后的状态当作两个不同的状态处理;但是在一个物理系统中,交换两个电子后,得到的还是原来的状态。因此进行统计时,必须将交换前和交换后的状态当作同一个状态来处理。

根据微观世界的这些规律改造经典统计力学,就得到量子统计力学。应用量子统计力学就能使一系列经典统计力学无法解释的现象,如黑体辐射、低温下的固体比热容、固体中的电子为什么对比热的贡献如此小等等,都得到了合理的解释。

原子核物理学

原子核是比原子更深一个层次的物质结构。原子核物理学是研究原子核的性质、内部结构、内部运动、内部激发状态、衰变过程、裂变过程以及它们之间的反应过程的学科。

在原子核被发现以后,科学家们曾经以为原子核是由质子和电子组成的。1932年,英国科学家查德威克发现了中子,这才使人们认识到原子核可能具有更复杂的结构。

同类推荐
  • 别让地球抛弃我们:远离垃圾与白色污染

    别让地球抛弃我们:远离垃圾与白色污染

    作为新时代的青少年,我们要养成良好的生活习惯,远离“白色污染”,提高人们对“白色污染”危害的认识,提高全社会的环保意识,养成良好的卫生习惯。在自身严格遵守环保法规的同时,积极制止身边的不良行为。《远离垃圾与白色污染》提倡我们少用塑料袋,多用布袋和篮子,减少生活垃圾,让地球更加美丽!
  • 探索未知丛书-植物之谜01

    探索未知丛书-植物之谜01

    探索未知,追求新知,创造未来。本丛书包括:地理世界、动物乐园、海洋与天空、化学天地、计算机王国、历史趣闻、美术沙龙、农业科学、少年楷模、物理城堡、艺术天地、音乐之声、幼儿教育、语文大观、植物之谜、走遍天下、祖国在我心中等书籍。
  • 鹰隼突击——空中武器

    鹰隼突击——空中武器

    本书从战斗机、攻击机、轰炸机、直升机、运输机、侦察机、预警机、反潜机、加油机九个方面详细地介绍了每种飞机的用途和它们的代表机型。书中介绍的每一种战机都具有鲜明特色,力求让喜爱现代军事的读者获得视觉和阅读的双重享受。同时,本书也加入了与之相关的一些趣闻阅读和知识链接,详细介绍军用飞机漫长的发展史,同时详细解读隐身技术、变后掠翼技术、矢力推量技术等现代军用飞机的高端技术,目的是增加阅读的趣味性,旨在让青少年走进科学殿堂,探索航空知识。
  • 地理大发现的故事:2015中国好书榜上榜图书

    地理大发现的故事:2015中国好书榜上榜图书

    早期地理发现的历史主要是一个征服史,西欧国家开辟新航路,罗马帝国扩张版图,并用地图的形式记录下来。与此同时,探险家和发现者在历史上也取得了一席之地,他们对人类文明的进步起到了不可磨灭的作用。本书中,作者以时间为轴线,从地理知识的发源地开始,用通俗易懂的语言介绍了人类通过征服、扩张、贸易和沟通交流对地理知识不断认知的过程。透过地理发现的历史故事,我们可以了解到地图和地理知识是如何被人记录下来的。
  • 战车王国

    战车王国

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。科学教育,让广大青少年树立这样一个牢固的信念:科学总是在寻求、发现和了解世界的新现象,研究和掌握新规律,它是创造性的,它又是在不懈地追求真理,需要我们不断地努力奋斗。
热门推荐
  • 离仙记

    离仙记

    一个落魄的小乞丐偶然之间进入仙道,一个懵懂无知的少年在这广阔波澜的修仙界又将掀起怎样的斗争,人魔之间无数年的争斗,又将何去何从,一切尽在离仙记。
  • 壮志说涅槃重生

    壮志说涅槃重生

    她是神秘的杀手,他是名扬千里的戏子,暗自喜结连理候的他们并不被世人看好,那又有什么?两人鼓舞彼此朝梦想启航。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 道长真香

    道长真香

    重生气运衰竭的修仙世界,成了气运之子,而且是只能输出不能自奶的人形锦鲤,人见人爱,花见花开?但,所谓福兮祸所伏,贫道的身子是那么好馋的吗?PS:不弱智,慢热,性子急的看到这里就可以点“X”了。
  • 计白当黑

    计白当黑

    沉寂多年铸剑世家再次复出,打破了江湖多年的平静。一场夺宝盛会,多方势力云集,石宗霸主,御风公子,邋遢少年谁又会是这场纷争的受益者?
  • 爱的路上不止你和我

    爱的路上不止你和我

    喜欢,是淡淡的爱;爱,是浓浓的喜欢。当浓浓的喜欢遇上淡淡的爱,结果似乎显而易见。林宇浩,一个算是被爱伤过的人,在选择爱的道路上,就算没有悬念,也免不了各种纠结。乔依依,一个完全没有恋爱经验的人,在遇上自己喜欢的人时,真是无主见。在爱情的道路上,爱,会很爱,不爱,会很不爱。在爱情的道路上,谁先认真,谁就先输了。在爱情的道路上,不论对与错。
  • 懵懂纯念

    懵懂纯念

    一个女生的平凡而又不平凡的青春
  • 噩梦诡谈

    噩梦诡谈

    作为一个心理咨询师,姜黎最大的愿望就是能够看到自己的患者康复,直到有一天,他收到了一封患者的来信……
  • 征战天下

    征战天下

    穿越到大秦时代的段业,凭借对历史的了如指掌,发明高级军用器械,建立无敌铁军收取良才名将挥兵天下,大败各路诸侯于沙场之上,全盘战局操于手掌之中,成就宏图霸业!
  • 绝爱成殇

    绝爱成殇

    七年后,注定没有未来的重逢,所有的深情都将变成难以忘记的殇痛。七年前,他们错过;七年后,再次重逢,他将另娶她人。七年的等待换来的却是深爱的男人另娶她人,七年的思念换来的竟是心碎而死。。当心爱的女人在自己和别人的婚礼上心碎而死时,他又该如何面对。。七年前,怎样的谎言让两个深爱的人天各一方,生离死别。。